[1] SRIDEVI T, SWAPNA P, HARINATH K.Vehicle identification based on the model[C]//Proceedings of the 7th International Advance Computing Conference.Washington D.C., USA:IEEE Press, 2017:566-571. [2] YANG L J, LUO P, CHANGE L C, et al.A large- scale car dataset for fine-grained categorization and verification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:3973-3981. [3] 罗建豪, 吴建鑫.基于深度卷积特征的细粒度图像分类研究综述[J].自动化学报, 2017, 43(8):1306-1318. LUO J H, WU J X.A survey on fine-grained image categorization using deep convolutional features[J].Acta Automatica Sinica, 2017, 43(8):1306-1318.(in Chinese) [4] 张小瑞, 陈旋, 孙伟, 等.基于深度学习的车辆再识别研究进展[J].计算机工程, 2020, 46(11):1-11. ZHANG X R, CHEN X, SUN W, et al.Progress of vehicle re-identification research based on deep learning[J]. Computer Engineering, 2020, 46(11):1-11.(in Chinese) [5] 郑远攀, 李广阳, 李晔.深度学习在图像识别中的应用研究综述[J].计算机工程与应用, 2019, 55(12):20-36. ZHENG Y P, LI G Y, LI Y.Survey of application of deep learning in image recognition[J].Computer Engineering and Applications, 2019, 55(12):20-36.(in Chinese) [6] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [7] HOU Q B, ZHANG L, CHENG M M, et al.Strip pooling:rethinking spatial pooling for scene parsing[EB/OL].[2021-06-10].https://arxiv.org/abs/2003.13328. [8] 叶晴昊, 涂岱键, 毕奇, 等.基于多视图架构深度神经网络的图像威胁识别[J].计算机工程, 2020, 46(11):261-266. YE Q H, TU D J, BI Q, et al.Image threat recognition based on multiple view architecture deep neural network[J]. Computer Engineering, 2020, 46(11):261-266.(in Chinese) [9] 张儒鹏, 于亚新, 张康, 等.基于OI-LSTM神经网络结构的人类动作识别模型研究[J].计算机科学与探索, 2018, 12(12):1926-1939. ZHANG R P, YU Y X, ZHANG K, et al.Research on human action recognition model based on OI-LSTM neural network structure[J].Journal of Frontiers of Computer Science and Technology, 2018, 12(12):1926-1939.(in Chinese) [10] JIE H, LI S, SAMUEL A, et al.Squeeze-and-excitation networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [11] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[EB/OL].[2021-06-10].https://arxiv.org/abs/1807.06521. [12] HOU Q B, ZHOU D Q, FENG J S.Coordinate attention for efficient mobile network design[EB/OL].[2021-06-10].https://arxiv.org/abs/2103.02907. [13] DEVRIES T, TAYLOR G W.Improved regularization of convolutional neural networks with cutout[EB/OL].[2021-06-10].https://arxiv.org/abs/1708.04552. [14] ZHONG Z, ZHENG L, KANG G L, et al.Random erasing data augmentation[EB/OL].[2021-06-10].https://arxiv.org/abs/1708.04896. [15] CUBUK E D, ZOPH B, MANE D, et al.Autoaugment:learning augmentation policies from data[EB/OL].[2021-06-10].https://arxiv.org/abs/1805.09501. [16] HU T, QI H G, HUANG Q M, et al.See better before looking closer:weakly supervised data augmentation network for fine-grained visual classification[EB/OL].[2021-06-10].https://arxiv.org/abs/1901.09891. [17] WEN Y, ZHANG K, LI Z, et al.A discriminative feature learning approach for deep face recognition[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:499-515. [18] KRAUSE J, STARK M, DENG J, et al.3D object representations for fine-grained categorization[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2013:554-561. [19] SELVARAJU R R, COGSWELL M, DAS A, et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[J].International Journal of Computer Vision, 2020, 128(2):336-359. [20] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2021-06-10].https://arxiv.org/pdf/1409.1556.pdf. [21] SZEGEDY C, VANHOUCKE V, IOFFE S, et al.Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1-10. [22] FU J, ZHENG H, TAO M.Look closer to see better:recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:4476-4484. [23] ZHENG H, FU J, TAO M, et al.Learning multi-attention convolutional neural network for fine-grained image recognition[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:5219-5227. |