[1] 逄涛, 张学敏, 姚亚洲, 等. 基于特征增强的光学遥感图像建筑物变化检测[J]. 计算机工程, 2023, 49(4):182-187. PANG T, ZHANG X M, YAO Y Z, et al. Optical remote sensing image building change detection based on feature enhancement[J]. Computer Engineering, 2023, 49(4):182-187.(in Chinese) [2] 朱淑鑫, 周子俊, 顾兴健, 等. 基于RCF网络的遥感图像场景分类研究[J]. 激光与光电子学进展, 2021, 58(14):1401001. ZHU S X, ZHOU Z J, GU X J, et al. Scene classification of remote sensing images based on RCF network[J]. Laser & Optoelectronics Progress, 2021, 58(14):1401001.(in Chinese) [3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA:IEEE Press, 2016:779-788. [4] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA:IEEE Press, 2017:6517-6525. [5] REDMON J, FARHADI A. YOLOv3:an incremental improvement[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2018:1-6. [6] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2023-05-11]. https://arxiv.org/abs/2004.10934. [7] GIRSHICK R. Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2015:1440-1448. [8] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [9] 宋忠浩, 谷雨, 陈旭, 等. 基于加权策略的高分辨率遥感图像目标检测[J]. 计算机工程与应用, 2021, 57(13):199-206. SONG Z H, GU Y, CHEN X, et al. Target detection in high-resolution remote sensing image based on weighted strategy[J]. Computer Engineering and Applications, 2021, 57(13):199-206.(in Chinese) [10] LUO S,YU J,XI Y, et al. Aircraft target detection in remote sensing images based on improved YOLOv5[J]. IEEE Access,2022,10:5184-5192. [11] WANG X, HE N, HONG C, et al. Improved YOLOX-X based UAV aerial photography object detection algorithm[J]. Image and Vision Computing, 2023, 135:104697. [12] 王浩桐, 郭中华.锚框策略匹配的SSD飞机遥感图像目标检测[J]. 计算机科学与探索, 2022, 16(11):2596. WANG H T, GUO Z H. Target detection in remote sensing images of SSD aircraft based on anchor frame strategy matching[J]. Journal of Computer Science and Exploration, 2022, 16(11):2596.(in Chinese) [13] 王道累, 杜文斌, 刘易腾, 等. 基于密集连接与特征增强的遥感图像检测[J]. 计算机工程, 2022, 48(6):251-256, 262. WANG D L, DU W B, LIU Y T, et al. Remote sensing images detection based on dense connection and feature enhancement[J]. Computer Engineering, 2022, 48(6):251-256, 262.(in Chinese) [14] DING J, XUE N, LONG Y, et al. Learning RoI Transformer for oriented object detection in aerial images[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2019:2849-2858. [15] YANG X, YANG J R, YAN J C, et al. SCRDet:towards more robust detection for small, cluttered and rotated objects[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2019:8232-8241. [16] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2017:2117-2125. [17] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2018:8759-8768. [18] TAN M X, PANG R M, LE Q V. EfficientDet:scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2020:10781-10790. [19] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet:a new backbone that can enhance learning capability of CNN[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA:IEEE Press, 2020:1571-1580. [20] WANG Q L, WU B G, ZHU P F, et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2020:11534-11542. [21] LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany:Springer, 2018:404-419. [22] YANG X, YAN J C. Arbitrary-oriented object detection with circular smooth label[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany:Springer, 2020:677-694. [23] XIA G S, BAI X, DING J, et al. DOTA:a large-scale dataset for object detection in aerial images[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2018:3974-3983. [24] JIANG Y, ZHU X, WANG X, et al. R2CNN:rotational region CNN for orientation robust scene text detection[EB/OL].[2023-05-11]. https://arxiv.org/abs/1706.09579. [25] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL].[2023-05-11]. https://arxiv.org/abs/2207.02696. [26] WANG J W, DING J, GUO H W, et al. Mask OBB:a semantic attention-based mask oriented bounding box representation for multi-category object detection in aerial images[J]. Remote Sensing, 2019, 11(24):2930. |