1 |
林涛. 基于深度学习的无人舰艇目标检测方法研究[D]. 沈阳: 沈阳工业大学, 2020.
|
|
LIN T. Research on target detection method of unmanned warship based on deep learning[D]. Shenyang: Shenyang University of Technology, 2020. (in Chinese)
|
2 |
GAO S, YANG K, SHI H, et al. Review on panoramic imaging and its applications in scene understanding. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1- 34.
URL
|
3 |
李盛辉, 周俊, 姬长英, 等. 基于全景视觉的智能农业车辆运动障碍目标检测. 农业机械学报, 2013, 44 (12): 239- 244.
doi: 10.6041/j.issn.1000-1298.2013.12.040
|
|
LI S H, ZHOU J, JI C Y, et al. Moving obstacle detection based on panoramic vision for intelligent agricultural vehicle. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44 (12): 239- 244.
doi: 10.6041/j.issn.1000-1298.2013.12.040
|
4 |
翁翔宇. 三目混合立体视觉系统检测技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
|
|
WENG X Y. Research on detection technology of three-eye hybrid stereo vision system[D]. Harbin: Harbin Engineering University, 2019. (in Chinese)
|
5 |
LOWE D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
6 |
BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision. Berlin, Germany: Springer, 2006: 404-417.
|
7 |
HAST A, NYSJÖ J, MARCHETTI A. Optimal RANSAC-towards a repeatable algorithm for finding the optimal set. Journal of WSCG, 2013, 21 (1): 21- 30.
URL
|
8 |
FISCHER C, WETZL J, SCHAEFFTER T, et al. Fully automated background phase correction using M⁃estimate sample consensus(MSAC)—application to 2D and 4D flow. Magnetic Resonance in Medicine, 2022, 88 (6): 2709- 2717.
doi: 10.1002/mrm.29363
|
9 |
WEN L W, DING J S, XU Z. Multiframe detection of sea-surface small target using deep convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1- 16.
|
10 |
GUO Z X, SHUI P L. Anomaly based sea-surface small target detection using K-nearest neighbor classification. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56 (6): 4947- 4964.
doi: 10.1109/TAES.2020.3011868
|
11 |
ZHANG Y, GUO Z Y, WU J Q, et al. Real-time vehicle detection based on improved YOLOv5. Sustainability, 2022, 14 (19): 12274.
doi: 10.3390/su141912274
|
12 |
CHEN L A, YANG Y Y, WANG Z H, et al. Underwater target detection lightweight algorithm based on multi-scale feature fusion. Journal of Marine Science and Engineering, 2023, 11 (2): 320.
doi: 10.3390/jmse11020320
|
13 |
ZHENG Z H, ZHAO J, LI Y E. Research on detecting bearing-cover defects based on improved YOLOv3. IEEE Access, 2021, 9, 10304- 10315.
doi: 10.1109/ACCESS.2021.3050484
|
14 |
李松江, 耿兰兰, 王鹏. 基于改进YOLOv4的车辆目标检测. 计算机工程, 2023, 49 (4): 272- 280.
URL
|
|
LI S J, GENG L L, WANG P. Vehicle target detection based on improved YOLOv4. Computer Engineering, 2023, 49 (4): 272- 280.
URL
|
15 |
李嘉新, 侯进, 盛博莹, 等. 基于改进YOLOv5的遥感小目标检测网络. 计算机工程, 2023, 49 (9): 256- 264.
URL
|
|
LI J X, HOU J, SHENG B Y, et al. Remote sensing small object detection network based on improved YOLOv5. Computer Engineering, 2023, 49 (9): 256- 264.
URL
|
16 |
CHEN X, LIU Y C, ACHUTHAN K. WODIS: water obstacle detection network based on image segmentation for autonomous surface vehicles in maritime environments. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1- 10.
doi: 10.1109/TIM.2021.3092070
|
17 |
ZHANG R, LIU J Y, LI H Y, et al. Real-time obstacle detection based on monocular vision for unmanned surface vehicles[C]//Proceedings of International Conference on Bio-inspired Information and Communication Technologies. Berlin, Germany: Springer, 2020: 166-180.
|
18 |
SHI B H, SU Y X, LIAN C, et al. Obstacle type recognition in visual images via dilated convolutional neural network for unmanned surface vehicles. Journal of Navigation, 2022, 75 (2): 437- 454.
doi: 10.1017/S0373463321000941
|
19 |
MA L Y, XIE W, HUANG H B. Convolutional neural network based obstacle detection for unmanned surface vehicle. Mathematical Biosciences and Engineering, 2020, 17 (1): 845- 861.
doi: 10.3934/mbe.2020045
|
20 |
修春波, 马云菲, 潘肖楠. 基于距离融合的图像特征点匹配方法. 计算机应用, 2019, 39 (11): 3158- 3162.
doi: 10.11772/j.issn.1001-9081.2019051180
|
|
XIU C B, MA Y F, PAN X N. Image feature point matching method based on distance fusion. Journal of Computer Applications, 2019, 39 (11): 3158- 3162.
doi: 10.11772/j.issn.1001-9081.2019051180
|
21 |
WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2020: 390-391.
|
22 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
23 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
24 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4510-4520.
|
25 |
|
26 |
陈科圻, 朱志亮, 邓小明等. 多尺度目标检测的深度学习研究综述. 软件学报, 2021, 32 (4): 1201- 1227.
doi: 10.13328/j.cnki.jos.006166
|
|
CHEN K Q, ZHU Z L, DENG X M, et al. Deep learning for multi-scale object detection: a survey. Journalof Soft-ware, 2021, 32 (4): 1201- 1227.
doi: 10.13328/j.cnki.jos.006166
|
27 |
陈方杰, 韩军, 王祖武等. 基于改进GMS和加权投影变换的图像配准算法. 激光与光电子学进展, 2018, 55 (11): 180- 186.
doi: 10.3788/LOP55.111006
|
|
CHEN F J, HAN J, WANG Z W, et al. Image registration algorithm based on improved GMS and weighted pro-jection Transformation. Laser & Optoelectronics Progress, 2018, 55 (11): 180- 186.
doi: 10.3788/LOP55.111006
|
28 |
CATHERWOOD D F, EDGAR G K, NIKOLLA D, et al. Mapping brain activity during loss of situation awareness: an EEG investigation of a basis for top-down influence on perception. Human Factors, 2014, 56 (8): 1428- 1452.
doi: 10.1177/0018720814537070
|
29 |
|
30 |
|