[1] JIN C, YANG Z, WANG Z, et al.Provably efficient reinforcement learning with linear function approximation[C]//Proceedings of the 33rd Annual Conference on Learning Theory.Graz, Austria:[s.n.], 2020:2137-2143. [2] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al.Mastering the game of go without human knowledge[J].Nature, 2017, 550(7676):354-359. [3] ERIA K, JAYABALAN M.Neural machine translation:a review of the approaches[J].Journal of Computational and Theoretical Nanoscience, 2019, 16(8):3596-3602. [4] SETHI A, GU M, GUMUSGOZ E, et al.Supervised enhancer prediction with epigenetic pattern recognition and targeted validation[J].Nature Methods, 2020, 17(8):807-814. [5] LAI N, KAN M, HAN C, et al.Learning to learn adaptive classifier-predictor for few-shot learning[J].IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(8):3458-3470. [6] MISHRA N, ROHANINEJAD M, CHEN X, et al.A simple neural attentive meta-learner[EB/OL].(2017-07-11)[2020-11-10].https://arxiv.org/pdf/1707.03141v3.pdf. [7] LI F F, FERGUS R, PERONA P.One-shot learning of object categories[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4):594-611. [8] SANTORO A, BARTUNOV S, BOTVINICK M, et al.Meta-learning with memory-augmented neural networks[C]//Proceedings of International Conference on Machine Learning.New York, USA:IEEE Press, 2016:1842-1850. [9] KAISER Ł, NACHUM O, ROY A, et al.Learning to remember rare events[EB/OL].(2017-03-09)[2020-11-10].https://arxiv.org/pdf/1703.03129.pdf. [10] FINN C, ABBEEL P, LEVINE S.Model-agnostic meta-learning for fast adaptation of deep networks[EB/OL].(2017-03-09)[2020-11-10].https://arxiv.org/pdf/1703.03400v3.pdf [11] CHEN Z, FU Y, WANG Y X, et al.Image deformation meta-networks for one-shot learning[C]//Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:8680-8689. [12] KOCH G, ZEMEL R, SALAKHUTDINOV R.Siamese neural networks for one-shot image recognition[C]//Proceedings of the 32nd International Conference on Machine Learning.Lille, France:[s.n.], 2015:1-8. [13] VINYALS O, BLUNDELL C, LILLICRAP T, et al.Matching networks for one shot learning[C]//Proceedings of NIPS'16.Berlin, Germany:Springer, 2016:3630-3638. [14] SNELL J, SWERSKY K, ZEMEL R.Prototypical networks for few-shot learning[C]//Proceedings of NIPS'17.Berlin, Germany:Springer, 2017:4077-4087. [15] SUNG F, YANG Y, ZHANG L, et al.Learning to compare:relation network for few-shot learning[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:1199-1208. [16] LING Y, XIAN Z, ZHOU Z.Holographic shear viscosity in hyperscaling violating theories without translational invariance[J].Journal of High Energy Physics, 2016(11):7. [17] JIANG Y, LAI X, WATANABE K, et al.Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene[J].Nature, 2019, 573(7772):91-95. [18] NAMOZOV A, CHO Y I.An improvement for medical image analysis using data enhancement techniques in deep learning[C]//Proceedings of 2018 International Conference on Information and Communication Technology Robotics.Washington D.C., USA:IEEE Press, 2018:1-3. [19] DOMMASCHK M, ECHAVARREN J, LEIGH D A, et al.Dynamic control of chiral space Through local symmetry breaking in a rotaxane organocatalyst[J].Angewandte Chemie International Edition, 2019, 58(42):14955-14958. [20] COHEN T, WELLING M.Group equivariant convolutional networks[C]//Proceedings of International Conference on Machine Learning.New York, USA:ACM Press, 2016:2990-2999. [21] VIALATTE J C, GRIPON V, MERCIER G.Generalizing the convolution operator to extend CNNs to irregular domains[EB/OL].(2016-06-03)[2020-11-10].https://arxiv.org/pdf/1606.01166.pdf. [22] ULLRICH K, MEEDS E, WELLING M.Soft weight-sharing for neural network compression[EB/OL].(2017-02-13)[2020-11-10].https://arxiv.org/pdf/1702.04008.pdf. [23] LI J, LI B, XU J, et al.Fully connected network-based intra prediction for image coding[J].IEEE Transactions on Image Processing, 2018, 27(7):3236-3247. [24] JIANG W, HUANG C, DENG X.A new probability transformation method based on a correlation coefficient of belief functions[J].International Journal of Intelligent Systems, 2019, 34(6):1337-1347. [25] CLEMONS E K, DEWAN R M, KAUFFMAN R J, et al.Understanding the information-based transformation of strategy and society[J].Journal of Management Information Systems, 2017, 34(2):425-456. [26] LIU M Y, HUANG X, MALLYA A, et al.Few-shot unsupervised image-to-image translation[C]//Proceedings of 2019 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:10551-10560. [27] ETIKAN I, BALA K.Sampling and sampling methods[J].Biometrics & Biostatistics International Journal, 2017, 5(6):1-5. [28] DEY N, CHEN A, GHAFURIAN S.Group equivariant generative adversarial networks[EB/OL].(2020-05-04)[2020-11-10].https://arxiv.org/pdf/2005.01683v2.pdf. |