1 |
KIRKPATRICK J , PASCANU R , RABINOWITZ N , et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114 (13): 3521- 3526.
doi: 10.1073/pnas.1611835114
|
2 |
LI Z Z , HOIEM D . Learning without forgetting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (12): 2935- 2947.
doi: 10.1109/TPAMI.2017.2773081
|
3 |
LEE S W, KIM J H, JUN J, et al. Overcoming catastrophic forgetting by incremental moment matching[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 4655-4665.
|
4 |
ALJUNDI R, BABILONI F, ELHOSEINY M, et al. Memory aware synapses: learning what (not) to forget[C]//Proceedings of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 144-161.
|
5 |
|
6 |
ROBINS A . Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 1995, 7 (2): 123- 146.
doi: 10.1080/09540099550039318
|
7 |
ATKINSON C, MCCANE B, SZYMANSKI L, et al. Pseudo-Recursal: solving the catastrophic forgetting problem in deep neural networks[EB/OL]. [2023-10-11]. https://arxiv.org/abs/1802.03875.
|
8 |
|
9 |
ZHANG B , GUO Y , LI Y , et al. Memory recall: a simple neural network training framework against catastrophic forgetting. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (5): 2010- 2022.
doi: 10.1109/TNNLS.2021.3099700
|
10 |
ZENG G X , CHEN Y , CUI B , et al. Continual learning of context-dependent processing in neural networks. Nature Machine Intelligence, 2019, 1 (8): 364- 372.
doi: 10.1038/s42256-019-0080-x
|
11 |
MALLYA A, LAZEBNIK S. PackNet: adding multiple tasks to a single network by iterative pruning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7765-7773.
|
12 |
SERRÀ J, SURÍS D, MIRON M, et al. Overcoming catastrophic forgetting with hard attention to the task[C]//Proceedings of the 35th International Conference on Machine Learning. New York, USA: ACM Press, 2018: 1-17.
|
13 |
NIU S C , WU J X , ZHANG Y F , et al. Disturbance-immune weight sharing for neural architecture search. Neural Networks, 2021, 144 (C): 553- 564.
doi: 10.1016/J.NEUNET.2021.09.002
|
14 |
CHEN S L , WU J J , LU Q H , et al. Cross-scene loop-closure detection with continual learning for visual simultaneous localization and mapping. International Journal of Advanced Robotic Systems, 2021, 18 (5): 17298814211050560.
doi: 10.1177/17298814211050560
|
15 |
LI X B , WANG W Q . GopGAN: gradients orthogonal projection generative adversarial network with continual learning. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34 (1): 215- 227.
|
16 |
HUA J Q , LI Y G , MOU W P , et al. An accurate cutting tool wear prediction method under different cutting conditions based on continual learning. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236 (1/2): 123- 131.
doi: 10.1177/0954405421993694
|
17 |
CORY C, BENAVIDES-PRADO D, KOH Y S. Continual correction of errors using smart memory replay[C]//Proceedings of International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2021: 1-8.
|
18 |
|
19 |
WANG S P, LI X R, SUN J, et al. Training networks in null space of feature covariance for continual learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 184-193.
|
20 |
CHAUDHRY A , KHAN N , DOKANIA P , et al. Continual learning in low-rank orthogonal subspaces. Advances in Neural Information Processing Systems, 2020, 33, 9900- 9911.
doi: 10.48550/arXiv.2010.11635
|
21 |
LEE D E , NAKAMURA K , TAK J H , et al. A continual learning algorithm based on orthogonal gradient descent beyond neural tangent kernel regime. IEEE Access, 2023, 11, 85395- 85404.
doi: 10.1109/ACCESS.2023.3303869
|
22 |
HE X, JAEGER H. Overcoming catastrophic interference using conceptoraided backpropagation[C]//Proceedings of International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2018: 1-11.
|
23 |
HU W P, LIN Z, LIU B, et al. Overcoming catastrophic forgetting via model adaptation[C]//Proceedings of International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2019: 1-13.
|