作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2026, Vol. 52 ›› Issue (2): 101-109. doi: 10.19678/j.issn.1000-3428.0069882

• 计算智能与模式识别 • 上一篇    

基于图注意力网络的多谣言源识别模型

马满福, 杨鑫, 李勇, 刘泽政   

  1. 西北师范大学计算机科学与工程学院, 甘肃 兰州 730070
  • 收稿日期:2024-05-21 修回日期:2024-07-27 发布日期:2024-10-16
  • 作者简介:马满福,男,教授、博士,主研方向为软件理论、网格计算、物联网;杨鑫(通信作者),硕士研究生,E-mail:a2460676963@163.com;李勇,副教授、博士;刘泽政,硕士研究生。
  • 基金资助:
    国家自然科学基金(72364033);甘肃省科技计划项目(23JRZA397);西北师范大学高校重大科研项目培育计划项目(NWNU-LKZD2021-06)。

Multiple Rumor Source Recognition Model Based on Graph Attention Networks

MA Manfu, YANG Xin, LI Yong, LIU Zezheng   

  1. College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2024-05-21 Revised:2024-07-27 Published:2024-10-16

摘要: 谣言源的准确识别能够抑制谣言的传播扩散,减少谣言对社会公众的影响。目前的谣言源识别模型忽略了节点之间影响力的差异性,导致在聚合邻居特征信息时权重相同,从而降低了谣言源识别的准确性。提出一种基于图注意力网络(GAT)的多谣言源识别模型——MRSDGAT。首先,在一个完成谣言传播的社交网络中,利用用户状态、谣言来源突出性和中心性将社交网络中的用户节点表示成向量,通过此向量构建出节点的特征矩阵。然后,通过GAT挖掘节点之间的相互影响力,计算节点的影响力权重,并按照节点间的影响力权重聚合节点特征信息。接着,在注意力层之间引入残差连接以缓解梯度消失问题,提高识别多个谣言源的能力。最后,模型输出的值为每个节点作为源节点的概率值,概率值越大,表明该节点作为源节点的可能性越大。实验结果表明,在Karate数据集上,MRSDGAT模型的F1值比基线GCNSI模型提升了14.09、13.32、13.10百分点,比基线LPSI模型提升了23.41、22.59、24.21百分点,识别性能更优。

关键词: 节点表示, 谣言源, 多谣言源识别, 图注意力网络, 残差连接

Abstract: The accurate recognition of rumor sources can help suppress the spread of rumors and reduce their impact on the public. Existing rumor source recognition models often overlook the differences in mutual influence between nodes, which leads to equal weighting when aggregating neighboring feature information, thereby reducing the accuracy of rumor source recognition. This paper proposes a multiple-rumor source recognition model based on Graph Attention Networks (GATs), called, MRSDGAT. First, in a social network where a rumor has already spread, user status, source prominence of rumors, and centrality are used to represent user nodes as vectors that are then used to construct a feature matrix for the nodes. Subsequently, using the GAT is employed to explore the mutual influence between nodes, calculate the influence weights, and aggregate node feature information according to the weight of the influence between nodes. Simultaneously, residual connections are introduced between the attention layers to resolve the issue of gradient disappearance and improve the ability to identify multiple rumor sources. Finally, the model outputs the probability value of each node as a source node. The larger the probability value, the greater the possibility that the node is a source node. The experimental results show that on the Karate dataset, the F1 value of the MRSDGAT model improves by 14.09, 13.32, and 13.10 percentage points compared to the baseline GCNSI model, and by 23.41, 22.59, and 24.21 percentage points compared to the baseline LPSI model, indicating better recognition performance.

Key words: node representation, rumor source, multiple rumor source recognition, Graph Attention Networks (GAT), residual connection

中图分类号: