作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (12): 244-254. doi: 10.19678/j.issn.1000-3428.0069929

• 网络空间安全 • 上一篇    下一篇

基于隐式分位数网络的车联网任务卸载策略

王聪1,*(), 刘帅2, 左明敏2   

  1. 1. 东北大学秦皇岛分校计算机与通信工程学院, 河北 秦皇岛 066004
    2. 东北大学计算机与通信工程学院, 辽宁 沈阳 110819
  • 收稿日期:2024-05-28 修回日期:2024-07-24 出版日期:2025-12-15 发布日期:2024-09-27
  • 通讯作者: 王聪
  • 基金资助:
    河北省自然科学基金(F2022501025); 河北省重大科技支撑计划(242Q1602Z)

Task Offloading Strategy for Internet of Vehicles Based on Implicit Quantile Network

WANG Cong1,*(), LIU Shuai2, ZUO Mingmin2   

  1. 1. School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, Hebei, China
    2. School of Computer and Communication Engineering, Northeastern University, Shenyang 110819, Liaoning, China
  • Received:2024-05-28 Revised:2024-07-24 Online:2025-12-15 Published:2024-09-27
  • Contact: WANG Cong

摘要:

随着物联网(IoT)和无线技术的迅猛发展, 车辆面临着前所未有的计算资源需求挑战。为了应对这些挑战, 研究车辆边缘计算(VEC)场景中的任务卸载问题, 提出一种基于隐式分位数网络(IQN)的动态任务卸载策略。首先, 对VEC系统进行建模, 将任务卸载决策问题构建为一个马尔可夫决策过程(MDP); 然后, 引入一种融合时间优先和噪声增强策略的双分位数强化学习算法, 以实现更加精准的任务卸载。该算法利用IQN对值函数的完整概率分布进行估计, 进而实现对回报分布的连续参数化估计, 有效提升预测和决策的准确性。同时, 算法整合了时序优先经验回放机制和噪声网络, 前者优先重放对学习更有价值的经验, 后者通过引入随机性增强了探索效率。实验结果表明, 与传统算法相比, 该算法能够显著降低整体任务的完成时延, 同时提升任务卸载决策的准确性和系统资源的利用率。研究表明, 通过引入IQN和双分位数强化学习算法, 可以在动态且复杂的车联网(IoV)环境中实现高效的任务卸载。

关键词: 车联网, 边缘计算, 任务卸载, 深度强化学习, 隐式分位数网络

Abstract:

With the rapid development of the Internet of Things (IoT) and wireless technology, vehicles are facing unprecedented challenges in terms of computing resource demands. To address these challenges, task offloading in Vehicle Edge Computing (VEC) scenarios is studied, and a dynamic task offloading strategy based on an Implicit Quantile Network (IQN) is proposed. First, the VEC system is modeled, and the task offloading decision problem is constructed as a Markov Decision Process (MDP); Subsequently, a binary reinforcement learning algorithm that integrates time-first and noise enhancement strategies is introduced to achieve more accurate task offloading. This algorithm utilizes an IQN to estimate the complete probability distribution of the value function, thereby achieving a continuous parameterized estimation of the return distribution and effectively improving the prediction and decision-making accuracy. Simultaneously, the algorithm integrates a temporal-priority experience replay mechanism and a noise network. The former prioritizes replaying experiences that are more valuable for learning, whereas the latter enhances exploration efficiency by introducing randomness. The experimental results show that, compared with traditional algorithms, this algorithm can significantly reduce the overall task completion delay while improving the accuracy of task offloading decisions and the utilization of system resources. Research has shown that by introducing IQN and binary reinforcement learning algorithms, efficient task offloading can be achieved in dynamic and complex Internet of Vehicles (IoV) environments.

Key words: Internet of Vehicles (IoV), edge computing, task offloading, Deep Reinforcement Learning (DRL), Implicit Quantile Network (IQN)