| 1 |
刘雷, 陈晨, 冯杰, 等. 车载边缘计算卸载技术研究综述. 电子学报, 2021, 49 (5): 861- 871.
|
|
LIU L , CHEN C , FENG J , et al. A survey of computation offloading in vehicular edge computing networks. Acta Electronica Sinica, 2021, 49 (5): 861- 871.
|
| 2 |
李萌, 司鹏搏, 孙恩昌, 等. 基于车联网和移动边缘计算的时延可容忍数据传输. 北京工业大学学报, 2018, 44 (4): 529- 537.
|
|
LI M , SI P B , SUN E C , et al. Delay-tolerant data transmission based on Internet of Vehicles and mobile edge computing. Journal of Beijing University of Technology, 2018, 44 (4): 529- 537.
|
| 3 |
李子姝, 谢人超, 孙礼, 等. 移动边缘计算综述. 电信科学, 2018, 34 (1): 87- 101.
|
|
LI Z S , XIE R C , SUN L , et al. A survey of mobile edge computing. Telecommunications Science, 2018, 34 (1): 87- 101.
|
| 4 |
曹敦, 张应宝, 邹电, 等. V2X多节点协同分布式卸载策略. 通信学报, 2022, 43 (2): 185- 195.
|
|
CAO D , ZHANG Y B , ZOU D , et al. Multi-node cooperative distributed offloading strategy for V2X. Journal of Communications, 2022, 43 (2): 185- 195.
|
| 5 |
LEE J, NA W. A survey on vehicular edge computing architectures[C]//Proceedings of the 13th International Conference on Information and Communication Technology Convergence (ICTC). Washington D.C., USA: IEEE Press, 2022: 2198-2200.
|
| 6 |
戚可寒. 面向车辆边缘计算的任务卸载关键技术研究[D]. 杭州: 杭州电子科技大学, 2023.
|
|
QI K H. Research on key technologies of task unloading for vehicle edge computing[D]. Hangzhou: Hangzhou Dianzi University, 2023. (in Chinese)
|
| 7 |
YUAN S, FAN Y F, CAI Y. A survey on computation offloading for vehicular edge computing[C]//Proceedings of the 7th International Conference on Information Technology: IoT and Smart City. New York, USA: ACM Press, 2019: 107-112.
|
| 8 |
AHMED M , RAZA S , MIRZA M A , et al. A survey on vehicular task offloading: classification, issues, and challenges. Journal of King Saud University - Computer and Information Sciences, 2022, 34 (7): 4135- 4162.
doi: 10.1016/j.jksuci.2022.05.016
|
| 9 |
DAI F , LIU G Z , MO Q , et al. Task offloading for vehicular edge computing with edge-cloud cooperation. World Wide Web, 2022, 25 (5): 1999- 2017.
doi: 10.1007/s11280-022-01011-8
|
| 10 |
ZHANG J , GUO H Z , LIU J J , et al. Task offloading in vehicular edge computing networks: a load-balancing solution. IEEE Transactions on Vehicular Technology, 2020, 69 (2): 2092- 2104.
doi: 10.1109/TVT.2019.2959410
|
| 11 |
YAO J J , ANSARI N . Task allocation in fog-aided mobile IoT by Lyapunov online reinforcement learning. IEEE Transactions on Green Communications and Networking, 2020, 4 (2): 556- 565.
doi: 10.1109/TGCN.2019.2956626
|
| 12 |
TANG H J , WU H M , QU G J , et al. Double deep Q-network based dynamic framing offloading in vehicular edge computing. IEEE Transactions on Network Science and Engineering, 2023, 10 (3): 1297- 1310.
doi: 10.1109/TNSE.2022.3172794
|
| 13 |
LI S Y , HU X H , DU Y W . Deep reinforcement learning and game theory for computation offloading in dynamic edge computing markets. IEEE Access, 2021, 9, 121456- 121466.
doi: 10.1109/ACCESS.2021.3109132
|
| 14 |
ZHAN W H , LUO C B , WANG J , et al. Deep-reinforcement-learning-based offloading scheduling for vehicular edge computing. IEEE Internet of Things Journal, 2020, 7 (6): 5449- 5465.
doi: 10.1109/JIOT.2020.2978830
|
| 15 |
CUI Y P, DU L J, HE P, et al. Multi-vehicle intelligent collaborative computing strategy for Internet of vehicles[C]//Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC). Washington D.C., USA: IEEE Press, 2022: 1647-1652.
|
| 16 |
LIANG S N, WAN H B, QIN T F, et al. Multi-user computation offloading for mobile edge computing: a deep reinforcement learning and game theory approach[C]//Proceedings of the 20th IEEE International Conference on Communication Technology (ICCT). Washington D.C., USA: IEEE Press, 2020: 1534-1539.
|
| 17 |
ZHU A Q, GUO S T, MA M F, et al. Computation offloading for workflow in mobile edge computing based on deep Q-learning[C]//Proceedings of the 28th Wireless and Optical Communications Conference (WOCC). Washington D.C., USA: IEEE Press, 2019: 1-5.
|
| 18 |
WU Z Y , YAN D F . Deep reinforcement learning-based computation offloading for 5G vehicle-aware multi-access edge computing network. China Communications, 2021, 18 (11): 26- 41.
doi: 10.23919/JCC.2021.11.003
|
| 19 |
李强, 仪晋辉, 杜婷婷, 等. 移动边缘计算中基于A3C的依赖任务卸载与资源分配. 计算机工程, 2023, 49 (6): 42- 52.
doi: 10.19678/j.issn.1000-3428.0066095
|
|
LI Q , YI J H , DU T T , et al. Dependent task offloading and resource allocation based on A3C in mobile edge computing. Computer Engineering, 2023, 49 (6): 42- 52.
doi: 10.19678/j.issn.1000-3428.0066095
|
| 20 |
DAI P L, HU K W, WU X, et al. Asynchronous deep reinforcement learning for data-driven task offloading in MEC-empowered vehicular networks[C]//Proceedings of the IEEE INFOCOM Conference on Computer Communications. Washington D.C., USA: IEEE Press, 2021: 1-10.
|
| 21 |
WANG C L, PENG J, JIANG F, et al. An adaptive deep Q-learning service migration decision framework for connected vehicles[C]//Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC). Washington D.C., USA: IEEE Press, 2020: 944-949.
|
| 22 |
YUAN X M , CHEN J H , YANG J Y , et al. FedSTN: graph representation driven federated learning for edge computing enabled urban traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (8): 8738- 8748.
doi: 10.1109/TITS.2022.3157056
|
| 23 |
YUAN X M , CHEN J H , ZHANG N , et al. Low-cost federated broad learning for privacy-preserved knowledge sharing in the RIS-aided Internet of vehicles. Engineering, 2024, 33, 178- 189.
doi: 10.1016/j.eng.2023.04.015
|
| 24 |
班玉琦, 段利国, 温昊宇, 等. 面向移动感知的计算卸载及资源分配策略研究. 计算机工程, 2023, 49 (8): 163- 173.
doi: 10.19678/j.issn.1000-3428.0066522
|
|
BAN Y Q , DUAN L G , WEN H Y , et al. Research on mobility-aware computation offloading and resource allocation strategy. Computer Engineering, 2023, 49 (8): 163- 173.
doi: 10.19678/j.issn.1000-3428.0066522
|
| 25 |
DABNEY W, OSTROVSKI G, SILVER D, et al. Implicit quantile networks for distributional reinforcement learning[C]//Proceedings of International Conference on Machine Learning. New York, USA: ACM Press, 2018: 1096-1105.
|