| 1 |
NARAYANAN B N, DJANEYE-BOUNDJOU O, KEBEDE T M. Performance analysis of machine learning and pattern recognition algorithms for malware classification[C]//Proceedings of the IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS). Washington D.C., USA: IEEE Press, 2016: 338-342.
|
| 2 |
VASAN D , ALAZAB M , WASSAN S , et al. IMCFN: image-based malware classification using fine-tuned convolutional neural network architecture. Computer Networks, 2020, 171, 107138.
doi: 10.1016/j.comnet.2020.107138
|
| 3 |
YUAN B G , WANG J F , LIU D , et al. Byte-level malware classification based on Markov images and deep learning. Computers & Security, 2020, 92, 101740.
|
| 4 |
SHAUKAT K , LUO S H , VARADHARAJAN V . A novel deep learning-based approach for malware detection. Engineering Applications of Artificial Intelligence, 2023, 122, 106030.
doi: 10.1016/j.engappai.2023.106030
|
| 5 |
LIN W C , YEH Y R . Efficient malware classification by binary sequences with one-dimensional convolutional neural networks. Mathematics, 2022, 10 (4): 608.
doi: 10.3390/math10040608
|
| 6 |
ZHANG X L , WU K H , CHEN Z G , et al. MalCaps: a capsule network based model for the malware classification. Processes, 2021, 9 (6): 929.
doi: 10.3390/pr9060929
|
| 7 |
XIAO M , GUO C , SHEN G W , et al. Image-based malware classification using section distribution information. Computers & Security, 2021, 110, 102420.
|
| 8 |
ÇAYR A , VNAL U , DAĞ H S . Random CapsNet forest model for imbalanced malware type classification task. Computers & Security, 2021, 102, 102133.
|
| 9 |
YAN J Q, YAN G H, JIN D. Classifying malware represented as control flow graphs using deep graph convolutional neural network[C]//Proceedings of the 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). Washington D.C., USA: IEEE Press, 2019: 52-63.
|
| 10 |
ASLAN O , YILMAZ A A . A new malware classification framework based on deep learning algorithms. IEEE Access, 2021, 9, 87936- 87951.
doi: 10.1109/ACCESS.2021.3089586
|
| 11 |
WANG H M , ZHAO Y T , WANG Z J . Doc2vec-GRU: a behavior classifcation method for malicious code. International Journal of Network Security, 2024, 26 (3): 467- 476.
|
| 12 |
YESIR S, SOGUKPINAR I. Malware detection and classification using fastText and BERT[C]//Proceedings of the 9th International Symposium on Digital Forensics and Security (ISDFS). Washington D.C., USA: IEEE Press, 2021: 1-6.
|
| 13 |
KUMAR P S, UMI SALMA B, MISHRA I, et al. Malware detection classification using recurrent neural network[C]//Proceedings of the 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS). Washington D.C., USA: IEEE Press, 2022: 876-880.
|
| 14 |
GIBERT D , MATEU C , PLANES J . HYDRA: a multimodal deep learning framework for malware classification. Computers & Security, 2020, 95, 101873.
|
| 15 |
GIBERT D , PLANES J , MATEU C , et al. Fusing feature engineering and deep learning: a case study for malware classification. Expert Systems with Applications, 2022, 207, 117957.
doi: 10.1016/j.eswa.2022.117957
|
| 16 |
|
| 17 |
YOUSUF M I , ANWER I , RIASAT A , et al. Windows malware detection based on static analysis with multiple features. PeerJ Computer Science, 2023, 9, e1319.
doi: 10.7717/peerj-cs.1319
|
| 18 |
ULLAH F , SRIVASTAVA G , ULLAH S . A malware detection system using a hybrid approach of multi-heads attention-based control flow traces and image visualization. Journal of Cloud Computing, 2022, 11 (1): 75.
doi: 10.1186/s13677-022-00349-8
|
| 19 |
SINGH J , SINGH J . Detection of malicious software by analyzing the behavioral artifacts using machine learning algorithms. Information and Software Technology, 2020, 121, 106273.
doi: 10.1016/j.infsof.2020.106273
|
| 20 |
KIM J Y , CHO S B . Obfuscated malware detection using deep generative model based on global/local features. Computers & Security, 2022, 112, 102501.
|
| 21 |
熊其冰, 郭洋, 王世豪. 基于多特征融合和增强模型的恶意代码检测方法. 通信技术, 2023, 56 (5): 640- 646.
|
|
XIONG Q B , GUO Y , WANG S H . Malicious code detection method based on multi-feature fusion and enhanced model. Communications Technology, 2023, 56 (5): 640- 646.
|
| 22 |
李梦, 刘万平, 黄东. 基于特征融合的恶意代码检测. 计算机工程与设计, 2024, 45 (12): 3568- 3574.
|
|
LI M , LIU W P , HUANG D . Malicious code detection based on feature fusion. Computer Engineering and Design, 2024, 45 (12): 3568- 3574.
|
| 23 |
王硕, 王坚, 王亚男, 等. 一种基于特征融合的恶意代码快速检测方法. 电子学报, 2023, 51 (1): 57- 66.
|
|
WANG S , WANG J , WANG Y N , et al. A fast malicious code detection method based on feature fusion. Acta Electronica Sinica, 2023, 51 (1): 57- 66.
|
| 24 |
YAN H , ZHANG J , TANG Z G , et al. Malware classification method based on feature fusion. International Journal of Information Security, 2025, 24 (2): 97.
doi: 10.1007/s10207-025-01013-3
|
| 25 |
XUAN B N , LI J , SONG Y F . BiTCN-TAEfficientNet malware classification approach based on sequence and RGB fusion. Computers & Security, 2024, 139, 103734.
|
| 26 |
|
| 27 |
|
| 28 |
KOONCE B. ResNet50[C]//Proceedings of International Conference on Convolutional Neural Networks with Swift for Tensorflow. Berkeley, CA: Apress, 2021: 63-72.
|
| 29 |
OJALA T, PIETIKAINEN M, HARWOOD D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[C]//Proceedings of the 12th International Conference on Pattern Recognition. Washington D.C., USA: IEEE Press, 1994: 582-585.
|
| 30 |
HARALICK R M , SHANMUGAM K , DINSTEIN I . Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3 (6): 610- 621.
|
| 31 |
ZHANG Y N, HUANG Q J, MA X J, et al. Using multi-features and ensemble learning method for imbalanced malware classification[C]//Proceedings of the IEEE Trustcom/BigDataSE/ISPA. Washington D.C., USA: IEEE Press, 2016: 965-973.
|
| 32 |
|