作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2009, Vol. 35 ›› Issue (12): 90-91.

• 网络与通信 • 上一篇    下一篇

基于半监督学习的网络流量分类

佘 锋,王小玲   

  1. (中南大学信息科学与工程学院,长沙 410083)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2009-06-20 发布日期:2009-06-20

Network Traffic Classification Based on Semi-supervised Learning

SHE Feng, WANG Xiao-ling   

  1. (School of Information Science and Engineering, Central South University, Changsha 410083)
  • Received:1900-01-01 Revised:1900-01-01 Online:2009-06-20 Published:2009-06-20

摘要: 利用攻击在网络通信中独特的流特征,给出一个可以适应已知和未知攻击的半监督分类方法。在训练分类器中,提出使用加权采样技术得到训练流,同时采用顺序前向选择算法得到最佳的特征子集。使用KDD CUP1999性能评估数据,可以得到较高的流和字节分类准确度。

关键词: 网络流量分类, 半监督学习, 模糊C均值, 入侵检测

Abstract: This paper exploits distinctive flow characteristics of attacks when they communicate on a network, and proposes a semi-supervised classification method that can accommodate both known and unknown attacks. In training the classifier, it employs Sequential Forward Selection(SFS) to get the best feature subset. Meanwhile, it proposes weighted sampling techniques to obtain training flows. Performance evaluation using KDD CUP1999 data shows that high flow and byte classification accuracy can be achieved.

Key words: network traffic classification, semi-supervised learning, Fuzzy C-Means(FCM), intrusion detection

中图分类号: