作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2010, Vol. 36 ›› Issue (17): 204-205,209.

• 人工智能及识别技术 • 上一篇    下一篇

双Markov多假设IMM机动目标跟踪算法

董莎莎1,2,徐一兵1,李 勇1,高 敏2,刘 益3   

  1. (1. 中国人民解放军西安通信学院,西安 710106;2. 西安交通大学电子与信息工程学院,西安 710049;3. 总装26试验基地,西安 710000)
  • 出版日期:2010-09-05 发布日期:2010-09-02
  • 作者简介:董莎莎(1986-),女,硕士研究生,主研方向:信息融合技术;徐一兵,副教授、博士;李 勇、高 敏、刘 益,硕士研究生
  • 基金资助:
    国家“973”计划基金资助项目“基于视觉认知的非结构化信息处理理论与关键技术”(2007CB311006)

Double Markov Multiple Hypothesis IMM Maneuvering Target Tracking Algorithm

DONG Sha-sha1,2, XU Yi-bing1, LI Yong1, GAO Min2, LIU Yi3   

  1. (1. PLA Xi’an Communication Institute, Xi’an 710106; 2. School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an 710049; 3. The 26th Experiment Base of General Armament Department, Xi’an 710000)
  • Online:2010-09-05 Published:2010-09-02

摘要: 为提高交互式多模型(IMM)算法对机动目标的估计精度,需要增加其模型数量,但模型过多将导致计算量大并降低估计器性能。针对上述问题提出一种基于模型集的双马尔可夫多假设IMM机动目标跟踪算法。该算法用模型集间的马尔可夫转移阵描述模型集之间的大跳变,用模型的马尔可夫转移阵描述模型集内各模型间的小跳变或慢变,以达到细化建模、提高滤波精度的目的。

关键词: 目标跟踪, 交互式多模型(IMM), 模型集, 双Markov切换, 鲁棒性

Abstract: To improve estimation precision for maneuvering target of Interacting Multiple Model(IMM) algorithm, more models are demanded while too many models tend to increase of computation and decrease of estimator performance. Aiming at the problem, this paper proposes a double Markov Model Set based Multiple Hypothesis IMM(MS-MHIMM) maneuvering target tracking algorithm. This algorithm uses Markov transfer matrix between model sets to describe large hops between model sets, adopts Markov transfer matrix of model to describe small hops or slow hops between models in the same model set. Modeling is refined and filtering precision is improved.

Key words: target tracking, Interacting Multiple Model(IMM), model set, double Markov switch, robustness

中图分类号: