摘要: 结合以成对约束形式给出的监督信息和无监督信息,提出一种基于成对约束和稀疏保留的数据降维算法。通过成对约束信息进行鉴别分析,利用稀疏表示方法保留数据集在变换空间中的全局稀疏结构。实验结果表明,与传统特征抽取算法相比,该算法的识别效果更好,需要调节的参数更少,且鲁棒性较高。
关键词:
稀疏保留,
机器学习,
特征提取,
人脸识别
Abstract: This paper presents a dimensionality reduction algorithm based on pair-wise constraints and sparsity preserving. It combines some supervised information in the form of pair-wise constraints and large number of unsupervised information. It uses pair-wise constraints to discriminant analysis and uses sparse representation to preserve the sparse reconstructive structure in the transformed space. Compared with the traditional feature extraction method, this algorithm has a better recognition impact, lower parameters, and better robustness.
Key words:
sparsity preserving,
machine learning,
feature extraction,
face recognition
中图分类号:
王颖静, 王正群, 张国庆, 俞振洲. 基于成对约束和稀疏保留的数据降维算法[J]. 计算机工程, 2011, 37(24): 193-194.
WANG Ying-Jing, WANG Zheng-Qun, ZHANG Guo-Qiang, SHU Zhen-Zhou. Dimensionality Reduction Algorithm Based on Pair-wise Constraints and Sparsity Preserving[J]. Computer Engineering, 2011, 37(24): 193-194.