作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (22): 176-178. doi: 10.3969/j.issn.1000-3428.2012.22.043

• 人工智能及识别技术 • 上一篇    下一篇

基于Curvelet和LBP的可变光照人脸识别

周立俭 1,2,刘万泉 2,孙 洁 1   

  1. (1. 青岛理工大学通信与电子工程学院,山东 青岛 266033;2. 科廷大学计算机学院,珀斯 6102 澳大利亚)
  • 收稿日期:2012-01-04 修回日期:2012-03-30 出版日期:2012-11-20 发布日期:2012-11-17
  • 作者简介:周立俭(1970-),女,副教授、博士,主研方向:图像处理,模式识别;刘万泉,教授、博士生导师;孙 洁,讲师、硕士
  • 基金资助:
    山东省高等学校科技计划基金资助项目(J09LG03);2009年度山东省高等学校优秀骨干教师国际合作培养项目

Variable Illumination Face Recognition Based on Curvelet and LBP

ZHOU Li-jian 1,2, LIU Wan-quan 2, SUN Jie 1   

  1. (1. College of Communication and Electronic Engineering, Qingdao Technological University, Qingdao 266033, China; 2. Department of Computing, Curtin University, Perth WA 6102, Australia)
  • Received:2012-01-04 Revised:2012-03-30 Online:2012-11-20 Published:2012-11-17

摘要: 光照变化和环境噪声会引起人脸识别正确率下降。为此,提出一种基于Curvelet变换和LBP的可变光照人脸识别方法。对原始人脸图像进行Curvelet变换,对第1层低频系数,采用对数运算和局部二值模式运算克服光照影响,舍弃剩余的最高频信息子图像,以除去环境噪声和光照产生的阴影边界带有的虚假信息,利用主成分分析和线性判别分析方法进行人脸识别。仿真结果表明,该方法能有效去除光照和噪声引起的影响,具有较好的鲁棒性。

关键词: 人脸识别, 光照, 噪声, Curvelet变换, 局部二值模式, 主成分分析, 线性判别分析

Abstract: A variable illumination face recognition method based on Curvelet and Local Binary Pattern(LBP) is proposed to solve the recognition rate decline problem because of the variant illumination and noise. The original face images are decomposed by Curvelet transform. It processes the coefficients of the first layer by logarithm computing and LBP method to remove the effect of the illumination, and directly discards the surplus highest frequency information to alleviate the environment noise and the fake information at the intersection of the shadow. The face recognition is done by the Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA) using the preprocessed the first layer data and the other layer data. Simulation results show that this method can alleviate the effect of the illumination and environment noise, and has good robustness.

Key words: face recognition, illumination, noise, Curvelet transformation, Local Binary Pattern(LBP), Principal Component Analysis(PCA), Linear Discriminant Analysis(LDA)

中图分类号: