摘要: 针对短时傅里叶变换频率分辨率较差的缺点,提出一种基于双树复小波变换(DTCWT)和局部二进制模式(LBP)直方图的低分辨率人脸识别方法。使用DTCWT获得人脸图像的多尺度多方向的频率幅度响应,采用LBP获取频率幅度响应的统计直方图,通过基于统计的一致性模式得到更加紧凑的统计分布特征。实验结果表明,该方法在低分辨率人脸上可以达到较高的识别准确率。
关键词:
人脸识别,
低分辨率,
双树复小波变换,
局部二进制模式,
特征提取,
一致性模式
Abstract: To address the frequency resolution insufficiency of Short-term Fourier Transform(STFT), a novel low-resolution face recognition method is proposed in this paper by combining Dual-tree Complex Wavelet Transform(DTCWT) and compact Local Binary Pattern(LBP) histogram. Face images are processed using DTCWT to obtain multi-scale and multi-direction frequency response, and then face features are conducted by applying LBP histogram. In addition, a statistical uniform pattern is introduced to improve the efficiency of the proposed algorithm. Experimental results show that this method has excellent recognition accuracy on low-resolution face recognition.
Key words:
face recognition,
low-resolution,
Dual-tree Complex Wavelet Transform(DTCWT),
Local Binary Pattern(LBP),
feature extraction,
consistency pattern
中图分类号:
赵敏, 朱明. 基于DTCWT和LBP的低分辨率人脸识别[J]. 计算机工程, 2012, 38(22): 179-182.
DIAO Min, SHU Meng. Low-resolution Face Recognition Based on DTCWT and LBP[J]. Computer Engineering, 2012, 38(22): 179-182.