1 |
闵巍庆, 刘林虎, 刘宇昕, 等. 食品图像识别方法综述. 计算机学报, 2022, 45 (3): 542- 566.
doi: 10.11897/SP.J.1016.2022.00542
|
|
MIN W Q , LIU L H , LIU Y X , et al. Review of food image recognition methods. Chinese Journal of Computers, 2022, 45 (3): 542- 566.
doi: 10.11897/SP.J.1016.2022.00542
|
2 |
霍光, 林大为, 刘元宁, 等. 基于轻量级卷积神经网络的小样本虹膜图像分割. 吉林大学学报(理学版), 2023, 61 (3): 583- 591.
doi: 10.13413/j.cnki.jdxblxb.2022078
|
|
HUO G , LIN D W , LIU Y N , et al. Small-sample iris image segmentation based on lightweight convolutional neural networks. Journal of Jilin University (Science Edition), 2023, 61 (3): 583- 591.
doi: 10.13413/j.cnki.jdxblxb.2022078
|
3 |
MING Z Y, CHEN J J, CAO Y, et al. Food photo recognition for dietary tracking: system and experiment[C]//Proceedings of International Conference on Multimedia Modeling. Berlin, Germany: Springer, 2018: 129-141.
|
4 |
ZHU L , LI Z B , LI C , et al. High performance vegetable classification from images based on AlexNet deep learning model. International Journal of Agricultural and Biological Engineering, 2018, 11 (4): 190- 196.
doi: 10.25165/j.ijabe.20181104.2690
|
5 |
YANG H , KANG S , PARK C , et al. A hierarchical deep model for food classification from photographs. KSII Transactions on Internet and Information Systems, 2020, 14 (4): 1704- 1720.
doi: 10.3837/tiis.2020.04.016
|
6 |
申志军, 穆丽娜, 高静, 等. 细粒度图像分类综述. 计算机应用, 2023, 43 (1): 51- 60.
doi: 10.11772/j.issn.1001-9081.2021122090
|
|
SHEN Z J , MU L N , GAO J , et al. Review of fine-grained image categorization. Journal of Computer Applications, 2023, 43 (1): 51- 60.
doi: 10.11772/j.issn.1001-9081.2021122090
|
7 |
|
8 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA. IEEE Press, 2016: 770-778.
|
9 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA. IEEE Press, 2018: 7132-7141.
|
10 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2023-09-12]. http://arxiv.org/abs/2010.11929.
|
11 |
MIN W Q, LIU L H, WANG Z L, et al. ISIA food-500: a dataset for large-scale food recognition via stacked global-local attention network[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM Press, 2020: 393-401.
|
12 |
刘宇昕, 闵巍庆, 蒋树强, 等. 多尺度拼图重构网络的食品图像识别. 软件学报, 2022, 33 (11): 4379- 4395.
doi: 10.13328/j.cnki.jos.006325
|
|
LIU Y X , MIN W Q , JIANG S Q , et al. Food image recognition based on multi-scale jigsaw reconstruction network. Journal of Software, 2022, 33 (11): 4379- 4395.
doi: 10.13328/j.cnki.jos.006325
|
13 |
|
14 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
15 |
|
16 |
GEIRHOS R, RUBISCH P, MICHAELIS C, et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness[EB/OL]. [2023-09-12]. http://arxiv.org/abs/1811.12231.
|
17 |
|
18 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 9992-10002.
|
19 |
YUAN L , HOU Q B , JIANG Z H , et al. VOLO: vision outlooker for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (5): 6575- 6586.
|
20 |
CHU X X, TIAN Z, WANG Y Q, et al. Twins: revisiting the design of spatial attention in vision Transformers[EB/OL]. [2023-09-12]. http://arxiv.org/abs/2104.13840.
|
21 |
DONAHUE J, JIA Y Q, VINYALS O, et al. DeCAF: a deep convolutional activation feature for generic visual recognition[EB/OL]. [2023-09-12]. http://arxiv.org/abs/1310.1531.
|
22 |
|
23 |
KONG S, FOWLKES C. Low-rank bilinear pooling for fine-grained classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 7025-7034.
|
24 |
LI Y H, WANG N Y, LIU J Y, et al. Factorized bilinear models for image recognition[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 2098-2106.
|
25 |
GAO Y, BEIJBOM O, ZHANG N, et al. Compact bilinear pooling[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 317-326.
|
26 |
|
27 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
28 |
BOSSARD L, GUILLAUMIN M, VAN GOOL L. Food-101-mining discriminative components with random forests[C]// Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 446-461.
|
29 |
HE H S , KONG F Y , TAN J D . DietCam: multiview food recognition using a multikernel SVM. IEEE Journal of Biomedical and Health Informatics, 2016, 20 (3): 848- 855.
doi: 10.1109/JBHI.2015.2419251
|
30 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2015: 1-9.
|
31 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 2261-2269.
|
32 |
KAGAYA H, AIZAWA K, OGAWA M. Food detection and recognition using convolutional neural network[C]//Proceedings of the 22nd ACM international conference on Multimedia. New York, USA: ACM Press, 2014: 1085-1088.
|
33 |
YANAI K, KAWANO Y. Food image recognition using deep convolutional network with pre-training and fine-tuning[C]//Proceedings of the IEEE International Conference on Multimedia [WT《Times New Roman》]& Expo Workshops (ICMEW). Washington D.C., USA: IEEE Press, 2015: 1-6.
|
34 |
METWALLI A S, SHEN W, WU C Q. Food image recognition based on densely connected convolutional neural networks[C]//Proceedings of the International Conference on Artificial Intelligence in Information and Communication (ICAIIC). Washington D.C., USA: IEEE Press, 2020: 27-32.
|
35 |
FENG S , WANG Y G , GONG J H , et al. A fine-grained recognition technique for identifying Chinese food images. Heliyon, 2023, 9 (11): e21565.
doi: 10.1016/j.heliyon.2023.e21565
|
36 |
LIU X D, ZHU Y H, LIU L H, et al. Feature-Suppressed Contrast for self-supervised food pre-training[C]//Proceedings of the Proceedings of the 31st ACM International Conference on Multimedia. New York, USA: ACM Press, 2023: 4359-4367.
|
37 |
BETTADAPURA V, THOMAZ E, PARNAMI A, et al. Leveraging context to support automated food recognition in restaurants[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Washington D.C., USA: IEEE Press, 2015: 580-587.
|
38 |
WANG Z L , MIN W Q , LI Z , et al. Ingredient-guided region discovery and relationship modeling for food category-ingredient prediction. IEEE Transactions on Image Processing, 2022, 31, 5214- 5226.
doi: 10.1109/TIP.2022.3193763
|
39 |
CHEN X, ZHU Y, ZHOU H, et al. ChineseFoodNet: a large-scale image dataset for Chinese food recognition[EB/OL]. [2023-09-12]. http://arxiv.org/abs/1705.02743.
|
40 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 618-626.
|