作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 安全技术 • 上一篇    下一篇

基于GA与IFCM聚类算法的入侵检测

王亚男1,叶 蓓2,雷英杰1   

  1. (1. 空军工程大学防空反导学院,西安 710051;2. 空军驻上海地区军事代表室,上海 200030)
  • 收稿日期:2012-04-25 出版日期:2013-09-15 发布日期:2013-09-13
  • 作者简介:王亚男(1988-),女,硕士研究生,主研方向:信息安全;叶 蓓,博士研究生;雷英杰,教授、博士生导师

Intrusion Detection Based on GA and IFCM Clustering Algorithm

WANG Ya-nan 1, YE Bei 2, LEI Ying-jie 1   

  1. (1. School of Missile, Air Force Engineering University, Xi’an 710051, China; 2. Air Force Military Representative Office in Shanghai, Shanghai 200030, China)
  • Received:2012-04-25 Online:2013-09-15 Published:2013-09-13

摘要: 针对直觉模糊c-均值(IFCM)聚类算法易陷入局部最优的问题,从适应度值标定和群体多样化2个方面对遗传算法(GA)进行优化,并将优化后的GA与IFCM算法相结合,提出一种改进的IFCM算法用于入侵检测。优化后的GA具有更优良的全局寻优特性,与IFCM算法结合后,可避免算法陷入局部最优。在KDD CUP99数据集上的仿真结果表明,与IFCM算法相比,改进算法能有效提高聚类精度和检测效率。

关键词: 直觉模糊c-均值, 聚类, 局部最优值, 遗传算法, 全局寻优, 入侵检测

Abstract: Concerning that the Intuitionistic Fuzzy c-means(IFCM) clustering algorithm has a deficiency of easily falling into a local optimum, an improved IFCM which combines the traditional IFCM with the upgraded Genetic Algorithm(GA) is proposed. The traditional GA is upgraded from two aspects:the fitness standardization and the group diversification. The upgraded GA is more effective in global optimization, which can overcome the IFCM’s shortcoming of local optimum. Then the improved IFCM algorithm is innovatively practised in intrusion detection, and contrastive experiments on data sets KDD CUP99 show that, compared with IFCM algorithm, this algorithm advances the clustering precision effectively and has good reliability and feasibility.

Key words: Intuitionistic Fuzzy c-means(IFCM), clustering, local optimum, Genetic Algorithm(GA), global optimization, intrusion detection

中图分类号: