参考文献
[1]余凯,贾磊,陈雨强,等.深度学习的昨天、今天和明天[J].计算机研究与发展,2015,50(9):1799-1804.
[2]Hinton G.A Practical Guide to Training Restricted Boltzma-nn Machines[J].Momentum,2010,9(1):926-946.
[3]Fischer A,Igel C.An Introduction to Restricted Boltzmann Machines[C]//Proceedings of the 17th Iberoamerican Congress.Buenos
Aires,Argentina:CIARP,2012:14-36.
[4]刘建伟,刘媛,罗雄麟.玻尔兹曼机研究进展[J].计算机研究与发展,2015,51(1):1-16.
[5]Hinton G E.Training Poducts of Eperts by Mnimizing Cntrastive Dvergence[J].Neural Computation,2002,14(8):1771-1800.
[6]Hinton G E,Salakhutdinov R R.Replicated Softmax:An Undirected Topic Model[C]//Proceedings of NIPS’09.[S.l.]:Morgan Kaufmann,2009:1607-
1614.
[7]Salakhutdinov R,Mnih A,Hinton G.Restricted Boltzma-nn Machines for Collaborative Filtering[C]//Proceedings of the 24th International
Conference on Machine Learning.New York,USA:ACM Press,2007:791-798.
[8]Taylor G W,Hinton G E,Roweis S T.Modeling Human Motion Using Binary Latent Variables[C]//Proceedings of NIPS’06.[S.l.]:Morgan
Kaufmann,2006:1345-1352.
[9]Lee H,Grosse R,Ranganath R,et al.Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations
[C]//Proceedings of the 26th Annual International Conference on Machine Learning.New York,USA:ACM Press,2009:609-616.
[10]Zeiler M D,Fergus R.Stochastic Pooling for Regularizetion of Deep Convolutional Neural Networks[C]//Proceedings of International
Conference on Representaiton Learning.Washington D.C.,USA:IEEE Press,2013.
[11]Gao Jingyu,Yang Jinfu,Wang Guanghui,et al.A Novel Feature Extraction Method for Scene Recognition Based on Centered Convolutional Restricted
Boltzmann Machines[J].Computer Science,2015,11(2):14-19.
[12]Kalchbrenner N,Grefenstette E,Blunsom P.A Convolu-tional Neural Network for Modelling Sentences[C]//Proceedings of NIPS’15.
[S.l.]:Morgan Kaufmann,2015:2042-2050.
[13]Norouzi M,Ranjbar M,Mori G.Stacks of Convolutional Restricted Boltzmann Machines for Shift-invariant Feature Learning[C]//Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2009:2735-2742.
[14]Desjardins G,Bengio Y.Empirical Evaluation of Convolutional RBMs for Vision[D].Montreal,Canada:Université de Montréal,2008.
[15]Cruz-Roa A A,Ovalle J E A,Madabhushi A,et al.A Deep Learning Architecture for Image Representation,Visual Interpretability and Automated
Basalcell Carcinoma Cancer Detection[C]//Proceedings of MICCAI’13.Berlin,Germany:Springer,2013:403-410.
[16]Hultin H.Image Classification Using a Combination of Convolutional Layers and Restricted Boltzmann Machines[Z].2015.
[17]Lei Nie,Kumar A,Song Zhan.Periocular Recognition Using Unsupervised Convolutional RBM Feature Learning[C]//Proceedings of ICPR’
14.Washington D.C.,USA:IEEE Press,2014:399-404.
[18]Huang G B,Lee H,Learned-Miller E.Learning Hierar-chical Representations for Face Verification with Con-volutional Deep Belief Networks
[C]//Proceedings of CVPR’12.Washington D.C.,USA:IEEE Press,2012:2518-2525.
[19]Chen Yan,Zhu Mengyao,Epain N,et al.Unsupervised Fea-ture Learning on Monaural DOA Estimation Using Convolu-tional Deep Belief Networks
[C]//Proceedings of INTER-NOISE and NOISE-CON Congress and Conferences.[S.l.]:Institute of Noise Control Engineering,2014:5393-5400.
[20]Huynh T,He Y,Rüger S.Learning Higher-level Features with Convolutional Restricted Boltzmann Machines for Sentiment Analysis[M]//Hanbury
A,Kazai G,Rauber A,et al.Advances in Information Retrieval.Berlin,Germany:Springer,2015:447-452.
[21]Carreira-Perpinan M A,Hinton G E.On Contrastive Divergence Learning[C]//Proceedings of the 10th International Workshop on Artificial
Intelligence and Statistics.[S.l.]:Society for Artificial Intelligence and Statistics,2005:33-40.
[22]Tieleman T.Training Restricted Boltzmann Machines Using Approximations to the Likelihood Gradient[C]//Proceedings of the 25th
International Conference on Machine Learning.New York,USA:ACM Press,2008:1064-1071.
[23]Tieleman T,Hinton G.Using Fast Weights to Improve Persistent Contrastive Divergence[C]//Proceedings of the 26th Annual International
Conference on Machine Learning.New York,USA:ACM Press,2009:1033-1040.
编辑金胡考 |