参考文献
[1]孙靖杰,赵建军,杨利斌,等.一种人工免疫分类方法在故障诊断中的应用[J].计算机工程,2013,39(8):208-214.
[2]陈斌.异常检测方法及其关键技术研究[D].南京:南京航空航天大学,2013.
[3]Shen Yin,Ding S X,Xie Xiaochen,et al.A Review on Basic Data-driven Approaches for Industrial Process Monitoring[J].IEEE Transactions on Industrial Electronics,2015,61(11):6418-6428.
[4]Feng Jian,Wang Jian,Han Zhiyan,et al.Fault Diagnosis Method of Joint Fisher Discriminant Analysis Based on the Local and Global Manifold Learning and Its Kernel Version[J].IEEE Transactions on Automation Science and
Engineering,2016,13(1):122-133.
[5]Martinez A M,Kak A C.PCA Versus LDA[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(2):228-233.
[6]Nguyen V H,Golinval J C.Fault Detection Based on Kernel Principal Component Analysis[J].Engineering Structures,2010 32(11):3683-3691.
[7]周东华,李钢,李元.数据驱动的工业过程故障诊断技术:基于主元分析与偏最小二乘的方法[M].北京:科学出版社,2011.
[8]Ariff M A M,Pal B C.Coherency Identification in Interconnected Power System——An Independent Component Analysis Approach[J].IEEE Transactions on Power Systems,2013 28(2):1747-1755.
[9]Yu Jie.A Support Vector Clustering Based Probabilistic Method for Unsupervised Fault Detection and
Classification of Complex Chemical Processes Using
Unlabeled Data[J].AIChE Journal,2013,59(2):407-419.
[10]He Xiaobin,Wang W,Yang Yupu,et al.Variable-weighted Fisher Discriminant Analysis for Process Fault Diagnosis[J].Journal of Process Control,2009,19(6):923-931.
[11]Zhu Zhibo,Song Zhihuan.A Novel Fault Diagnosis System Using Pattern Classification on Kernel FDA Subspace[J].Expert Systems with Applications,2011,38(6):6895-6905.
[12]Zhang Huaguang,Qin Chunbin,Luo Yanhong.Neural-network-based Constrained Optimal Control Scheme for Discrete-time Switched Nonlinear System Using Dual Heuristic Programming[J].IEEE Transactions on Automation Science and
Engineering,2014,11(3):839-849.
[13]Tax D M J,Duin R P W.Support Vector Data Description[J].Machine Learning,2004,54(1):45-66.
[14]Tax D M J,Duin R P W.Support Vector Data Description[J].Pattern Recongnition Letters,1999,20(11-13):1191-1199.
[15]刘小平,徐桂云,任世锦,等.一种新的不平衡数据v-NSVDD多分类算法[J].南京大学学报(自然科学版),2013,49(2):150-159.
[16]张少捷,王振雷,钱锋.基于LTSA的FSSVDD方法及其在化工过程监控中的应用[J].化工学报,2010,61(8):1894-1900.
[17]陈斌,李斌,潘志松,等.流形嵌入的支持向量数据描述[J].模式识别与人工智能,2009,22(4):548-553.
[18]Ling C X,Huang Jin,Zhang H.AUC:A Statistically Consistent and More Discriminating Measure than Accur-acy[C]//Proceedings of the 18th International Joint Conference on Artificial Intelligence.Washington D.C.,USA:IEEE
Press,2003:519-524.
[19]Huang Guangxin,Chen Huafu,Zhou Zhongli,et al.Two-class Support Vector Data Description[J].Pattern Recognition,2011,44(2):320-329.
[20]McCann M,Li Yuhua,Maguire L,et al.Causality Challenge:Benchmarking Relevant Signal Components for Effective Monitoring and Process Control[C]//Proceedings of JMLR Workshop.Washington D.C.,USA:IEEE Press,2008:277-288.
编辑顾逸斐 |