参考文献
[1]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Image classication with deep convolutional neural networks[C]//Proceedings of Advances in Neural Information Processing Systems.South Lake Tahoe,USA:MIT Press,2012:1097-1105.
[2]GONG Boqing,SHI Yuan,SHA Fei,et al.Geodesic flow kernel for unsupervised domain adaptation[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2012:2066-2073.
[3]SAENKO K,KULIS B,FRITZ M,et al.Adapting visual category models to new domains [C]//Proceedings of ECCV’10.Crete,Greece:Springer,2010:213-226.
[4]LONG Mingsheng,WANG Jianmin,DING Guiguang,et al.Transfer feature learning with joint distribution adapta-tion[C]//Proceedings of IEEE International Conference on Computer Vision.Portland,USA:IEEE Press,2013:2200-2207.
[5]PAN S J,TSANG I W,KWOK J T,et al.Domain adaptation via transfer component analysis[J].IEEE Transactions on Neural Networks,2011,22(2):199-210.
[6]PAN S J,KWOK J T,YANG Qiang.Transfer learning via dimensionality reduction[C]//Proceedings of AAAI’08.Chicago,USA:AAAI Press,2008:677-682.
[7]WANG Hao,WANG Wei,ZHANG Chen,et al.Cross-domain metric learning based on information theory [C]//Proceedings of AAAI’14.Quebec City,Canada:AAI Press,2014:2099-2105.
[8]DUAN Lixin,TSANG I W,XU Dong.Domain transfer multiple kernel learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(3),465-479.
[9]WANG Wei,WANG Hao,ZHANG Chen,et al.Transfer feature representation via multiple kernel learning[C]//Proceedings of AAAI’15.Austin,USA:AAAI Press,2015:3073-3079.
[10]YOSINSKI J,CLUNE J,BENGIO Y,et al.How transferable are features in deep neural networks? [C]//Proceedings of Advances in Neural Information Processing Systems.Montréal,Canada:MIT Press,2015:3320-3328.
[11]TZENG E,HOMAN J,ZHANG Ning,et al.Deep domain confusion:maximizing for domain invariance[EB/OL].[2014-10-21].http://pdfs.semanticscholar.org/.
[12]LONG Mingsheng,CAO Yue,WANG Jianmin,et al.Learning transferable features with deep adaptation networks [C]//Proceedings of ICML’15.Lille,France:[s.n.],2015:97-105.
[13]彭敏,傅慧,黄济民,等.基于核主成分分析与小波变换的高质量微博提取[J].计算机工程,2016,42(1):180-186.
[14]WESTON J,RATLE F,MOBAHI H,et al.Deep learning via semi-supervised embedding[M].Germany,Berlin:Springer,2012.
[15]GRIN G,HOLUB A,PEROAN P.Caltech-256 object category dataset[D].Pasadena,USA:California Institute of Technology,2007.
[16]JIA Yangqing,SHELHAMER E,DONAHUE J,et al.Caffe:convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM Inter-national Conference on Multimedia.Orlando,USA:ACM Perss,2014:675-678.
[17]DACHENG S S,GENG T B.Divergence-based regulariza-tion for transfer subspace learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(7):929-924.
[18]ZHU Guangtang,YANG Hanfang,LIN Lan,et al.An informative logistic regression for cross-domain image classification[C]//Proceedings of International Conference on Computer Vision Systems.Copenhagen,Denmark:Springer,2015:147-156.
[19]LONG Mingsheng,WANG Jianmin,DING Guiguang,et al.Transfer joint matching for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Columbus,USA:IEEE Press,2014:1410-1417.
编辑索书志 |