摘要: 半监督的双协同训练要求划分出的2个数据向量相互独立,不符合真实的网络入侵检测数据特征。为此,提出一种基于三协同训练(Tri-training)的入侵检测算法。使用大量未标记数据,通过3个分类器对检测结果进行循环迭代训练,避免交叉验证。仿真实验表明,在少量样本情况下,该算法的检测准确度比SVM Co-training算法提高了2.1%,并且随着循环次数的增加,其性能优势更加明显。
关键词:
入侵检测,
小样本,
支持向量机,
半监督,
双协同训练,
三协同训练
Abstract: The Co-training method requires the independence of two data vectors, which is far from the characteristic of real dataset in network intrusion detection. This paper proposes a intrusion detection method based on Tri-training. It exploits the large amount of unlabeled data, and increases the detection accuracy and stability by Co-training three classifiers. Simulation results show that this method is 2.1% more accurate than the SVM Co-training method, and it performs better with the increase of the loop number.
Key words:
intrusion detection,
small-sample,
Support Vector Machine(SVM),
semi-supervised,
Co-training,
Tri-training
中图分类号:
邬书跃, 余杰, 樊晓平. 基于Tri-training的入侵检测算法[J]. 计算机工程, 2012, 38(06): 158-160.
WU Shu-Ti, TU Jie, FAN Xiao-Beng. Intrusion Detection Algorithm Based on Tri-training[J]. Computer Engineering, 2012, 38(06): 158-160.