作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (08): 89-91.

• 安全技术 • 上一篇    下一篇

基于模糊小波神经网络的主机入侵预测

孙 娜 1,张桂玲 1,鄂明杰 2   

  1. (1. 天津工业大学计算机科学与软件学院,天津 300387; 2. 天津城市建设学院电子与信息工程系,天津 300384)
  • 收稿日期:2011-08-08 出版日期:2012-04-20 发布日期:2012-04-20
  • 作者简介:孙 娜(1975-),女,讲师、硕士,主研方向:网络安全;
  • 基金资助:
    天津市“十一五”人才引进计划基金资助项目(20090047)

Host Intrusion Prediction Based on Fuzzy Wavelet Neural Network

SUN Na 1, ZHANG Gui-ling 1, E Ming-jie 2   

  1. (1. School of Computer Science and Software Engineering, Tianjin Polytechnic University, Tianjin 300387, China; 2. Department of Electronic and Information Engineering, Tianjin Institute of Urban Construction, Tianjin 300384, China)
  • Received:2011-08-08 Online:2012-04-20 Published:2012-04-20

摘要: 综合利用模糊技术、神经网络与小波技术,提出一种主机入侵预测模型FWNN-IP。将系统调用按危险度进行分类,并为高危险度的系统调用赋予较高的值,利用模糊化后的系统调用短序列分析程序(进程)的踪迹,达到入侵预测的目的。实验结果表明,FWNN-IP模型能够及时预测程序(进程)中的异常,采取更加积极主动的预防措施抵制入侵行为。

关键词: 入侵预测, 入侵检测, 模糊神经网络, 小波神经网络, 系统调用

Abstract: This paper proposes a host intrusion prediction model named Fuzzy Wavelet Neural Network Intrusion Prediction(FWNN-IP) by using fuzzy methodology, neural network and wavelet technology. System calls are classified according to their dangerous degrees and higher dangerous system calls are assigned greater number. Programs(processes) traces are analyzed by applying fuzzed short sequences of system calls, and the aim of intrusion prediction can be achieved. Experimental results show that FWNN-IP can predict abnormal behaviors of programs(processes) more quickly, and takes more active action to protect host.

Key words: intrusion prediction, intrusion detection, fuzzy neural network, wavelet neural network, system call

中图分类号: