作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (5): 43-52. doi: 10.19678/j.issn.1000-3428.0062305

• 热点与综述 • 上一篇    下一篇

雾计算环境下入侵检测模型研究

李晋国, 焦旭斌   

  1. 上海电力大学 计算机科学与技术学院, 上海 200000
  • 收稿日期:2021-08-09 修回日期:2021-10-05 发布日期:2021-10-19
  • 作者简介:李晋国(1985—),男,副教授、博士,主研方向为信息安全、隐私保护;焦旭斌,硕士研究生。
  • 基金资助:
    国家自然科学基金(61702321,U1936213)。

Research on Intrusion Detection Model in Fog Computing Environment

LI Jinguo, JIAO Xubin   

  1. College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200000, China
  • Received:2021-08-09 Revised:2021-10-05 Published:2021-10-19

摘要: 当网络在云数据中心发送和处理数据的延迟较大时,大多实时智能应用程序都难以达到预期效果。雾计算允许这些对延迟敏感的应用程序在边缘设备上运行,这些设备被称为雾节点,其在地理位置上更接近应用程序。然而,雾计算中的雾节点通常计算资源有限,容易受到海量高维异常流量攻击,为此,提出一种特征降维的改进准递归神经网络,并基于该网络构建轻量级入侵检测模型FR-IQRNN。将雾节点采集到的高维攻击样本编码为低维向量以减少冗余特征,利用FR-IQRNN的循环连接捕获低维向量的时间依赖关系,同时在时间步长和小批量维度中实现并行计算,在此基础上,引入注意力机制强化模型对关键特征的提取能力,从而实现雾节点的入侵检测。在公开数据集UNSW_NB15上,FR-IQRNN模型能取得99.51%的准确率、99.23%的精确率以及99.79%的召回率,优于RNN-IDS、AESVM等模型,并且仅需127.94 s便达到95%以上的训练精度。在NSL-KDD数据集上,FR-IQRNN模型获得99.39%的准确率和99.27%的召回率,且在鲁棒性方面表现突出。

关键词: 雾计算, 入侵检测, 降维, 准递归神经网络, 并行运算, 注意力机制

Abstract: When the delay of sending and processing data in a cloud data center is large, most real-time intelligent applications struggle to realize their tasks.Fog computing allows these delay-sensitive applications to run on edge devices called fog nodes, which are geographically closer to the application.Fog nodes in fog computing typically have limited computing resources and are vulnerable to massive high-dimensional abnormal traffic attacks.Therefore, an improved quasi-recurrent neural network with feature dimensionality reduction is proposed, and a lightweight intrusion detection model, FR-IQRNN, is constructed based on this network.The high-dimensional attack samples collected by fog nodes are encoded into low-dimensional vectors to reduce redundant features.The circular connection of FR-IQRNN captures the time dependence of low-dimensional vectors.Simultaneously, parallel computing is realized in a time step and small batch dimension.On this basis, an attention mechanism is introduced to strengthen the extraction ability of key model features to realize the intrusion detection of fog nodes.On the public UNSW_NB15 dataset, the FR-IQRNN model achieved 99.51% in accuracy, 99.23% in precision, and 99.79% in recall, which outperforms RNN-IDS, AESVM, and other models and achieved above 95% in training accuracy in only 127.94 s.On the NSL-KDD dataset, the FR-IQRNN model achieved 99.39% in precision and 99.27% in recall, indicating that the model has outstanding robustness.

Key words: fog computing, intrusion detection, dimensionality reduction, quasi-recurrent neural network, parallel computing, attention mechanism

中图分类号: