[1] RASHID ABDULQADIR H, ZEEBAREE S R M, SHUKUR H M, et al.A study of moving from cloud computing to fog computing[J].Qubahan Academic Journal, 2021, 1(2):60-70. [2] SANTOS J, VAN DER HOOFT J, VEGA M T, et al.SRFog:a flexible architecture for virtual reality content delivery through fog computing and segment routing[C]//Proceedings of 2021 IFIP/IEEE International Symposium on Integrated Network Management.Washington D.C., USA:IEEE Press, 2021:1038-1043. [3] PAHARIA B, BHUSHAN K.A comprehensive review of Distributed Denial of Service(DDoS) attacks in fog computing environment[M]//GUPTA B, PEREZ G, AGRAWAL D, et al.Handbook of computer networks and cyber security.Berlin, Germany:Springer, 2020. [4] 李韵, 黄辰林, 王中锋, 等.基于机器学习的软件漏洞挖掘方法综述[J].软件学报, 2020, 31(7):2040-2061. LI Y, HUANG C L, WANG Z F, et al.Survey of software vulnerability mining methods based on machine learning[J].Journal of Software, 2020, 31(7):2040-2061.(in Chinese) [5] 张玉清, 董颖, 柳彩云, 等.深度学习应用于网络空间安全的现状、趋势与展望[J].计算机研究与发展, 2018, 55(6):1117-1142. ZHANG Y Q, DONG Y, LIU C Y, et al.Situation, trends and prospects of deep learning applied to cyberspace security[J].Journal of Computer Research and Development, 2018, 55(6):1117-1142.(in Chinese) [6] SUDQI KHATER B, ABDUL WAHAB A W B, IDRIS M Y I B, et al.A lightweight perceptron-based intrusion detection system for fog computing[J].Applied Sciences, 2019, 9(1):178. [7] AN X S, SU J T, LÜ X, et al.Hypergraph clustering model-based association analysis of DDOS attacks in fog computing intrusion detection system[J].EURASIP Journal on Wireless Communications and Networking, 2018, 18:249. [8] PENG K, LEUNG V C M, ZHENG L X, et al.Intrusion detection system based on decision tree over big data in fog environment[J].Wireless Communications and Mobile Computing, 2018, 18:4680867. [9] DIRO A A, CHILAMKURTI N.Distributed attack detection scheme using deep learning approach for Internet of things[J].Future Generation Computer Systems, 2018, 82:761-768. [10] SADAF K, SULTANA J.Intrusion detection based on autoencoder and isolation forest in fog computing[J].IEEE Access, 2020, 8:167059-167068. [11] 付子爔, 徐洋, 吴招娣, 等.基于增量学习的SVM-KNN网络入侵检测方法[J].计算机工程, 2020, 46(4):115-122. FU Z X, XU Y, WU Z D, et al.SVM-KNN network intrusion detection method based on incremental learning[J].Computer Engineering, 2020, 46(4):115-122.(in Chinese) [12] 叶佩文, 贾向东, 杨小蓉, 等.基于深度学习的自编码器端到端物理层优化方案[J].计算机工程, 2019, 45(12):86-90, 97. YE P W, JIA X D, YANG X R, et al.End-to-end physical layer optimization scheme using auto-encoder based on deep learning[J].Computer Engineering, 2019, 45(12):86-90, 97.(in Chinese) [13] 张百川, 赵佰亭.结合批归一化的轻量化卷积神经网络分类算法[J].哈尔滨商业大学学报(自然科学版), 2021, 37(3):300-306. ZHANG B C, ZHAO B T.Classification algorithm of lightweight convolutional neural network based on batch normalization[J].Journal of Harbin University of Commerce (Natural Sciences Edition), 2021, 37(3):300-306.(in Chinese) [14] GODIN F, DEGRAVE J, DAMBRE J, et al.Dual Rectified Linear Units (DReLUs):a replacement for tanh activation functions in quasi-recurrent neural networks[J].Pattern Recognition Letters, 2018, 116:8-14. [15] BALDUZZI D, GHIFARY M.Strongly-typed recurrent neural networks[EB/OL].[2021-07-05].https://arxiv.org/abs/1602.02218. [16] 郝志峰, 黄浩, 蔡瑞初, 等.基于多特征融合与双向RNN的细粒度意见分析[J].计算机工程, 2018, 44(7):199-204, 211. HAO Z F, HUANG H, CAI R C, et al.Fine-grained opinion analysis based on multi-feature fusion and bidirectional RNN[J].Computer Engineering, 2018, 44(7):199-204, 211.(in Chinese) [17] GRAVES A, SCHMIDHUBER J.Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J].Neural Networks, 2005, 18(5/6):602-610. [18] LOKESH S, MALARVIZHI KUMAR P, RAMYA DEVI M, et al.An automatic tamil speech recognition system by using bidirectional recurrent neural network with self-organizing map[J].Neural Computing and Applications, 2019, 31(5):1521-1531. [19] 王文冠, 沈建冰, 贾云得.视觉注意力检测综述[J].软件学报, 2019, 30(2):416-439. WANG W G, SHEN J B, JIA Y D.Review of visual attention detection[J].Journal of Software, 2019, 30(2):416-439.(in Chinese) [20] 张兴兰, 尹晟霖.可变融合的随机注意力胶囊网络入侵检测模型[J].通信学报, 2020, 41(11):160-168. ZHANG X L, YIN S L.Intrusion detection model of random attention capsule network based on variable fusion[J].Journal on Communications, 2020, 41(11):160-168.(in Chinese) [21] 郭璠, 张泳祥, 唐琎, 等.YOLOv3-A:基于注意力机制的交通标志检测网络[J].通信学报, 2021, 42(1):87-99. GUO F, ZHANG Y X, TANG J, et al.YOLOv3-A:a traffic sign detection network based on attention mechanism[J].Journal on Communications, 2021, 42(1):87-99.(in Chinese) [22] MOON D, IM H, KIM I, et al.DTB-IDS:an intrusion detection system based on decision tree using behavior analysis for preventing APT attacks[J].The Journal of Supercomputing, 2017, 73(7):2881-2895. [23] 刘辛.随机森林在云环境异常检测中的应用[D].北京:北京邮电大学, 2020. LIU X.Application of random forest in cloud computing anomaly detection[D].Beijing:Beijing University of Posts and Telecommunications, 2020.(in Chinese) [24] 池亚平, 凌志婷, 王志强, 等.基于支持向量机与Adaboost的入侵检测系统[J].计算机工程, 2019, 45(10):183-188, 202. CHI Y P, LING Z T, WANG Z Q, et al.Intrusion detection system based on support vector machine and Adaboost[J].Computer Engineering, 2019, 45(10):183-188, 202.(in Chinese) [25] YIN C L, ZHU Y F, FEI J L, et al.A deep learning approach for intrusion detection using recurrent neural networks[J].IEEE Access, 2017, 5:21954-21961. [26] TIAN Q, LI J M, LIU H B.A method for guaranteeing wireless communication based on a combination of deep and shallow learning[J].IEEE Access, 2019, 7:38688-38695. [27] KASONGO S M, SUN Y X.A deep learning method with wrapper based feature extraction for wireless intrusion detection system[J].Computers & Security, 2020, 92:101752. [28] ROY B, CHEUNG H.A deep learning approach for intrusion detection in Internet of things using bi-directional long short-term memory recurrent neural network[C]//Proceedings of the 28th International Telecommunication Networks and Applications Conference.Washington D.C., USA:IEEE Press, 2018:1-6. [29] VINAYAKUMAR R, SOMAN K P, POORNACHANDRAN P.Applying convolutional neural network for network intrusion detection[C]//Proceedings of International Conference on Advances in Computing, Communications and Informatics.Washington D.C., USA:IEEE Press, 2017:1222-1228. |