[1] PENG Bo.Research on QoS technology based on SDN[D].Chengdu:University of Electronic Science and Technology of China,2018.(in Chinese) 彭波.基于SDN的QoS技术研究[D].成都:电子科技大学,2018. [2] WINTER M,BREITSAMTER C.Coupling of recurrent and static neural network approaches for improved multi-step ahead time series prediction[EB/OL].[2019-06-25].https://link.springer.com/chapter/10.1007/978-3-319-64519-3_39. [3] KIM C,SIVARAMAN A,KATTA N,et al.In-band network telemetry via programmable dataplanes[EB/OL].[2019-06-25].https://www.mendeley.com/catalogue/11b69e55-1c8e-335a-b684-e3eceec4cc94/. [4] LIN Yunsenxiao,BI Jun,ZHOU Yu,et al.Research and applications of programmable data plane based on P4[J].Chinese Journal of Computers,2019,42(11):1-21.(in Chinese) 林耘森箫,毕军,周禹,等.基于P4的可编程数据平面研究及其应用[J].计算机学报,2019,42(11):1-21. [5] DAI Mian,CHENG Guang,ZHOU Yuyang.Survey on measure-ment methods in software-defined networking[J]Journal of Software,2019,30(6):1853-1874.(in Chinese) 戴冕,程光,周余阳.软件定义网络的测量方法研究[J].软件学报,2019,30(6):1853-1874. [6] SOMARAKIS C,GHAEDSHARAF Y,MOTEE N.Time-delay origins of fundamental tradeoffs between risk of large fluctuations and network connectivity[J].IEEE Transactions on Automatic Control,2019,64(9):3571-3586. [7] DANG Yaoguo,LIU Zhen,YE Jing.Direct modeling method of unbiased non-homogeneous grey prediction model[J].Control and Decision,2017,32(5):823-828.(in Chinese) 党耀国,刘震,叶璟.无偏非齐次灰色预测模型的直接建模法[J].控制与决策,2017,32(5):823-828. [8] DAI Xingyuan,FU Rui,LIN Yilun,et al.DeepTrend: a deep hierarchical neural network for traffic flow prediction[C]//Proceedings of 2017 IEEE International Conference on Intelligent Transportation Systems.Washington D.C.,USA: IEEE Press,2017:21-28. [9] XU Ning,DANG Yaoguo,GONG Yande.Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China[J].Energy,2017,118(1):473-480. [10] DOUCOURE B,AGBOSSOU K,CARDENAS A.Time series prediction using artificial wavelet neural network and multi-resolution analysis: application to wind speed data[J].Renewable Energy,2016,92(7):202-211. [11] LI Hongze,GUO Sen,LI Chunjie,et al.A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm[J].Knowledge-Based Systems,2013,37(2):378-387. [12] LIU Yuan,WANG Ruixue.Study on network traffic forecast model of SVR optimized by GAFSA[J].Chaos,Solitons and Fractals,2015,89(3):153-159. [13] CHEN Yuehui,YANG Bin,MENG Qingfang.Small-time scale network traffic prediction based on flexible neural tree[J].Applied Soft Computing,2012,12(1):274-279. [14] JOSHI M,HADI T.A review of network traffic analysis and prediction techniques[EB/OL].[2019-06-25].http://www.oalib.com/paper/4048815#.X0SSgFN_n3Q. [15] LI Peiyu.Short-term traffic flow prediction based on wavelet and neural network[J].Computer Technology and Development,2020,30(1):135-139.(in Chinese)李佩钰.一种基于小波和神经网络的短时交通流量预测[J].计算机技术与发展,2020,30(1):135-139. [16] WANG Pengtao,HAN Xiaoming,HE Min.Prediction simulation of bicycle demand for public bicycle stations[J].Computer Simulation,2019,36(8):421-426,458.(in Chinese)王鹏涛,韩晓明,贺敏.公共自行车站点需求量预测仿真[J].计算机仿真,2019,36(8):421-426,458. [17] JIA Hengjian.Investigation into the effectiveness of long short term memory networks for stock price prediction[EB/OL].[2019-06-25].https://arxiv.org/abs/1603.07893v1. [18] ZHAO Zheng,CHEN Weihai,WU Xingming,et al.LSTM network: a deep learning approach for short-term traffic forecast[J].IET Intelligent Transport Systems,2017,11(2):68-75. [19] KOZIK R.Distributing extreme learning machines with apache spark for NetFlow-based malware activity detection[J].Pattern Recognition Letters,2018,101(1):14-20. [20] ZHANG Junbo,ZHENG Yu,QI Dekang.Deep spatio-temporal residual networks for citywide crowd flows prediction[EB/OL].[2019-06-25].https://www.researchgate.net/publication/308809186_Deep_Spatio-Temporal_Residual_Networks_for_Citywide_Crowd_Flows_Prediction. [21] SHAO H X,SOONG B H.Traffic flow prediction with Long Short-Term Memory Networks(LSTMs)[C]//Proceedings of TENCON’16,Washington D.C.,USA: IEEE Press,2016:2986-2989. [22] TULI H,KUMAR S.Prediction analysis of delay in transferring the packets in adhoc networks[C]//Proceedings of 2016 International Conference on Computing for Sustainable Global Development.Washington D.C.,USA: IEEE Press,2016:35-42. [23] FENG Ning,GUO Shengnan,SONG Chao,et al.Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J].Journal of Software,2019,30(3):759-769.(in Chinese)冯宁,郭晟楠,宋超,等.面向交通流量预测的多组件时空图卷积网络[J].软件学报,2019,30(3):759-769. |