[1] ROMANO R,ARAGON C,DING C.Supernova recog-nition using support vector machines[C]//Proceedings of the 5th International Conference on Machine Learning and Applications.Washington D.C.,USA:IEEE Press,2006:77-82. [2] LOCHNER M,MCEWEN J D,PEIRIS H V,et al.Photometric supernova classification with machine learning[J].The Astrophysical Journal Letters Supplement Series,2016,225(2):31-33. [3] HEARST M A,VDUMAIS S T,OSUNA E,et al.Support vector machines[J].IEEE Intelligent Systems and Their Applications,1998,13(4):18-28. [4] FRIEDMAN J H.Greedy function approximation:a gradient boosting machine[J].The Annals of Statistics,2001,29(5):1189-1232. [5] KIMURA A,TAKAHASHI I,TANAKA M,et al.Single-epoch supernova classification with deep convolutional neural networks[C]//Proceedings of 2017 IEEE International Conference on Distributed Computing Systems Workshops.Washington D.C.,USA:IEEE Press,2017:354-359. [6] SULLIVAN M,HOWELL D A,PERRETT K,et al.Photometric selection of high-redshift type via supernova candidates[J].The Astronomical Journal,2006,131(2):960-972. [7] PEI Wei,XU Yanming,ZHU Yongying,et al.The target detection method of aerial photography images with improved SSD[J].Journal of Software,2019,30(3):738-758.(in Chinese)裴伟,许晏铭,朱永英,等.改进的SSD航拍目标检测方法[J].软件学报,2019,30(3):738-758. [8] ZHU Hui,QIN Pinle.U-Net pulmonary nodule detection algorithm based on multi-scale feature structure[J].Computer Engineering,2019,45(4):254-261.(in Chinese)朱辉,秦品乐.基于多尺度特征结构的U-Net肺结节检测算法[J].计算机工程,2019,45(4):254-261. [9] WU Shuai,XU Yong,ZHAO Dongning.Survey of object detection based on deep convolutional network[J].Pattern Recognition and Artificial Intelligence,2018,31(4):335-346.(in Chinese)吴帅,徐勇,赵东宁.基于深度卷积网络的目标检测综述[J].模式识别与人工智能,2018,31(4):335-346. [10] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2014:580-587. [11] UIJLINGS J R R,VAN DE SANDE K E A,GEVERS T,et al.Selective search for object recognition[J].International Journal of Computer Vision,2013,104(2):154-171. [12] GIRSHICK R.Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2015:1440-1448. [13] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [14] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot MultiBox detector[M].Berlin,Germany:Springer,2016. [15] TAO Zhenyu,SUN Sufen,LUO Changshou.Image recognition of peanut pests based on Faster-RCNN[J].Jiangsu Agricultural Sciences,2019,47(12):247-250.(in Chinese)陶震宇,孙素芬,罗长寿.基于Faster-RCNN的花生害虫图像识别研究[J].江苏农业科学,2019,47(12):247-250. [16] SUN X D,WU P C,HOI S C H.Face detection using deep learning:an improved Faster-RCNN approach[J].Neurocomputing,2018,299:42-50. [17] CHEN Ze,YE Xueyi,QIAN Dingwei,et al.Small scale pedestrian detection based on improved Faster R-CNN[J/OL].Computer Engineering:1-8[2020-07-29].https://doi.org/10.19678/j.issn.1000-3428.0055817.(in Chinese)陈泽,叶学义,钱丁炜,等.基于改进的Faster R-CNN小尺度行人检测[J/OL].计算机工程:1-8[2020-07-29].https://doi.org/10.19678/j.issn.1000-3428.0055817. [18] ZHAO Chunhui,ZHOU Yao.Ship target detection and recognition based on improved Faster R-CNN algorithm[J].Journal of Shenyang University(Natural Science),2018,30(5):366-371,380.(in Chinese)赵春晖,周瑶.基于改进Faster R-CNN算法的舰船目标检测与识别[J].沈阳大学学报(自然科学版),2018,30(5):366-371,380. [19] LIN Gang,WANG Bo,PENG Hui,et al.Multi-target detection and location of transmission line inspection image based on improved Faster-RCNN[J].Electric Power Automation Equipment,2019,39(5):213-218.(in Chinese)林刚,王波,彭辉,等.基于改进Faster-RCNN的输电线巡检图像多目标检测及定位[J].电力自动化设备,2019,39(5):213-218. [20] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-780. [21] LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:2117-2125. [22] SHRIVASTAVA A,GUPTA A,GIRSHICK R.Training region-based object detectors with online hard example mining[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:152-163. [23] ZEILER M D,FERGUS R.Visualizing and understanding convolutional networks[M].Berlin,Germany:Springer,2014. [24] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].Computer Science,2014,13(2):120-131. [25] DAI J,LI Y,HE K,et al.R-FCN:object detection via region-based fully convolutional networks[EB/OL].[2019-08-25].https://arxiv.org/pdf/1605.06409v2.pdf. |