作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2020, Vol. 46 ›› Issue (4): 198-205. doi: 10.19678/j.issn.1000-3428.0054300

• 移动互联与通信技术 • 上一篇    下一篇

基于30°角同心圆环形取样的室内人员检测方法

党小超1,2, 邓琦研1, 郝占军1,2   

  1. 1. 西北师范大学 计算机科学与工程学院, 兰州 730070;
    2. 甘肃省物联网工程研究中心, 兰州 730070
  • 收稿日期:2019-03-20 修回日期:2019-05-13 出版日期:2020-04-15 发布日期:2019-05-21
  • 作者简介:党小超(1963-),男,教授,主研方向为物联网、无线感知技术、无线传感器网络;邓琦研,硕士研究生;郝占军(通信作者),副教授、硕士。
  • 基金资助:
    国家自然科学基金(61662070,61762079);甘肃省科技重点研发项目(1604FKCA097,17YF1GA015);甘肃省科技创新项目(17CX2JA037,17CX2JA039)。

Indoor Personnel Detection Method Based on 30° Angle Concentric Circular Sampling

DANG Xiaochao1,2, DENG Qiyan1, HAO Zhanjun1,2   

  1. 1. College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China;
    2. Gansu Province Internet of Things Engineering Research Center, Lanzhou 730070, China
  • Received:2019-03-20 Revised:2019-05-13 Online:2020-04-15 Published:2019-05-21

摘要: 在现有基于信道状态信息的室内无源定位方法中,取样点的选取对指纹库的特征匹配准确率以及定位精度具有较大影响。根据WiFi信号的传输特性和信道的衰落特征,提出一种30°;角同心圆环形取样法。离线阶段,按照同心圆对检测区域实现环形划分并每隔30°;进行一次取样,运用主成分分析算法提取差异化信号特征并构建指纹库。在线阶段,通过陆地移动距离算法进行入侵检测,当检测到有人存在时,利用改进的支持向量回归算法并引入高斯核函数对数据进行特征匹配,最终实现人员的精确定位。实验结果表明,与CSI-MIMO、FIFS方法相比,该方法定位精度更高,定位误差更小。

关键词: 入侵检测, 室内定位, 30°角同心圆环形取样法, 主成分分析, 支持向量回归

Abstract: In the existing indoor passive location methods based on Channel State Information(CSI),the selection of sampling points has great impact on the feature matching accuracy and location accuracy of fingerprint database.According to the transmission features of WiFi and the fading features of channel,this paper proposes a 30° angle concentric circular sampling.In the offline phase,concentric circles are used to divide the detection area,taking samples every 30° angle.The differential signal features are extracted by the Principal Component Analysis(PCA) and the fingerprint database is constructed.In the online state,the land mobile distance algorithm is used for intrusion detection.When someone is detected,this method uses the improved Support Vector Regression(SVR) algorithm and introduces Gaussian kernel function to match the features of data,thus achieving precise location of the personnel.Experimental results show that compared with CSI-MIMI and FIFS methods,the proposed method has higher positioning accuracy and lower positioning error.

Key words: intrusion detection, indoor positioning, 30° angle concentric circular sampling method, Principal Component Analysis(PCA), Support Vector Regression(SVR)

中图分类号: