作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (5): 189-196. doi: 10.19678/j.issn.1000-3428.0057262

• 图形图像处理 • 上一篇    下一篇

基于自适应权重的改进Census立体匹配算法

黄彬, 胡立坤, 张宇   

  1. 广西大学 电气工程学院, 南宁 530004
  • 收稿日期:2020-01-17 修回日期:2020-02-20 发布日期:2020-03-06
  • 作者简介:黄彬(1994-),男,硕士研究生,主研方向为图像处理、立体匹配算法;胡立坤,教授、博士;张宇,硕士研究生。
  • 基金资助:
    国家自然科学基金(61863002)。

Improved Census Stereo Matching Algorithm Based on Adaptive Weight

HUANG Bin, HU Likun, ZHANG Yu   

  1. School of Electrical Engineering, Guangxi University, Nanning 530004, China
  • Received:2020-01-17 Revised:2020-02-20 Published:2020-03-06

摘要: 针对传统Census算法对噪声敏感且在弱纹理区域匹配精度低的不足,提出一种基于自适应权重的改进算法。在代价计算阶段,通过空间相似度加权计算得到参考像素值,设定阈值限定参考值与中心点像素的差异,使算法能够判断中心点是否发生突变并自适应选择中心参考像素值。在代价聚合阶段,引入多尺度聚合策略,将引导滤波作为代价聚合核函数,加入正则化约束保持代价聚合时尺度间的一致性。在视差计算阶段,通过胜者通吃法得到初始视差图。在视差优化阶段,对初始视差图做误匹配点检测及左右一致性检测,并对遮挡区域进行像素填充得到最终的视差图。基于Middlebury标准图的实验结果表明,该算法平均误匹配率为5.81%,对比于传统Census算法抗干扰性提升显著,并能在平均误匹配率表现上达到主流经典算法的性能水准。

关键词: 机器视觉, 立体匹配, Census变换, 自适应权重, 多尺度聚合

Abstract: In view of the noise sensitivity and low matching accuracy of traditional Census algorithms in weak texture region,this paper proposes an improved algorithm based on adaptive weight.At the stage of cost calculation,the reference pixel value is obtained by using the weighted calculation of spatial similarity,and the threshold is set to limit the difference between the reference value and the central point pixel,so that the proposed algorithm can judge whether the central point is mutated or not and select the central reference pixel value adaptively.At the stage of cost aggregation,a multi-scale aggregation strategy is introduced,guided filtering is adopted as the cost aggregation kernel function,and regularization constraints are added to maintain the consistency between scales during cost aggregation.At the stage of disparity calculation,the initial disparity map is obtained by using the Winner-Takes-All(WTA) method.During disparity optimization,mismatching point detection and left-right consistency detection are carried out for the initial disparity map,and pixel filling is carried out for the occluded area to obtain the final disparity map.The experimental results tested based on Middlebury benchmark demonstrate that the average mismatching rate of the proposed algorithm is 5.81%,which reaches the performance standard of mainsteam classical algorithms.The algorithm brings the performance level with the traditional Census algorithm while significantly improving the anti-noise performance.

Key words: machine vision, stereo matching, Census transform, adaptive weight, multi-scale aggregation

中图分类号: