[1] DONG C,LOY C C,HE K,et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. [2] DONG C,LOY C C,TANG X.Accelerating the super-resolution convolutional neural network[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2016:391-407. [3] SHI W Z,CABALLERO J,HUSZÁR F,et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[EB/OL].[2019-11-10].https://arxiv.org/abs/1609.05158. [4] KIM J,LEE J K,LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1646-1654. [5] LEDIG C,THEIS L,HUSZAR F,et al.Photo-realistic single image super-resolution using a generative adversarial network[EB/OL].[2019-11-10].https://arxiv.org/abs/1609.04802. [6] LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:312-124. [7] TONG Tong,LI Gen,LIU Xiejie,et al.Image super-resolution using dense skip connections[C]//Proceedings of IEEE International Conference on Computer Vision.[S.1.]:IEEE Computer Society,2017:4809-4817. [8] HUANG G,LIU Z,WEINBERGER K Q,et al.Densely connected convolutional networks[EB/OL].[2019-11-10].https://arxiv.org/abs/1608.06993. [9] WANG Yifan,WANG Liujun,WANG Hongyu,et al.End-to-end image super-resolution via deep and shallow convolutional networks[EB/OL].[2019-11-10].https://arxiv.org/abs/1607.07680. [10] YU Jiahui,FAN Yichneg,YANG Jianchao,et al.Wide activation for efficient and accurate image super-resolution[EB/OL].[2019-11-10].https://arxiv.org/abs/1808.08718. [11] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [12] KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImageNet classification with deep convolutional neural networks[C]//Proceedings of NIPS'12.Cambrigde,USA:MIT Press,2012:369-378. [13] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-11-10].https://arxiv.org/abs/. [14] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:458-467. [15] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[EB/OL].[2019-11-10].https://arxiv.org/abs/1512.03385. [16] TAI Ying,YANG Jian,LIU Xiaoming.Image super-resolution via deep recursive residual network[C]//Proceedings of IEEE Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:356-368. [17] DODGSON N A.Quadratic interpolation for image resampling[J].IEEE Transactions on Image Processing,1997,6(9):1322-1326. [18] ODENA A,DUMOULIN V,OLAH C.Deconvolution and checkerboard artifacts[EB/OL].[2019-11-10].https://distill.pub/2016/deconv-checkerboard/. [19] LUGMAYR A,DANELLJAN M,TIMOFTE R,et al.NTIRE 2020 challenge on real-world image super-resolution:methods and results[EB/OL].[2019-11-10].https://arxiv.org/abs/2005.01996. [20] BEVILACQUA M,ROUMY A,GUILLEMOT C,et al.Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of IEEE BMVC'12.Washington D.C.,USA:IEEE Press,2012:456-468. [21] ZEYDE R,ELAD M,PROTTER M.On single image scale-up using sparse-representations[C]//Proceedings of IEEE International Conference on Curves and Surfaces.Washington D.C.,USA:IEEE Press,2010:243-258. [22] MARTIN D,FOWLKES C,TAL D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of IEEE ICCV'01.Washington D.C.,USA:IEEE Press,2001:1125-1136. [23] HUNAG J B,SINGH A,AHUJA N.Single image super-resolution from transformed self-exemplars[C]//Proceedings of CVPR'15.Washington D.C.,USA:IEEE Press,2015:335-348. [24] TIMOFTE R,DE SMET V,VAN GOOL L.A+:adjusted anchored neighborhood regression for fast super-resolution[C]//Proceedings of International Conference on Computer Vision.Berlin,Germany:Springer,2014:111-126. |