作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (5): 267-272. doi: 10.19678/j.issn.1000-3428.0057426

• 开发研究与工程应用 • 上一篇    下一篇

基于深度学习的脸部年龄预测算法

张亮亮, 张明艳, 程凡永, 周鹏   

  1. 安徽工程大学 安徽省电气传动与控制重点实验室, 安徽 芜湖 241000
  • 收稿日期:2020-02-19 修回日期:2020-04-30 发布日期:2020-05-18
  • 作者简介:张亮亮(1995-),男,硕士研究生,主研方向为人工智能、深度学习、图像处理;张明艳,讲师、硕士;程凡永,讲师、博士;周鹏,副教授、硕士。
  • 基金资助:
    国家自然科学基金(61976005);安徽省教育厅重点项目(KJ2019A0149);安徽高校协同创新项目(GXXT-2020-070);安徽工程大学-鸠江区产业协同创新项目(2021cyxta2);安徽工程大学科研项目(Xjky02201903,2017YQQ010,2017YQQ011)。

Facial Age Prediction Algorithm Based on Deep Learning

ZHANG Liangliang, ZHANG Mingyan, CHENG Fanyong, ZHOU Peng   

  1. Anhui Key Laboratory of Electric Drive and Control, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2020-02-19 Revised:2020-04-30 Published:2020-05-18

摘要: 为提高脸部年龄预测的准确性,在深度学习的基础上提出一种可有效预测脸部年龄的算法。通过对人脸图像进行预处理,获取左眼、右眼、鼻子和嘴巴四个部分的局部图像,利用迁移TensorFlow深度学习库中的Inception V4模型,提取脸部图像四个部分的多尺度局部特征,并将提取的局部特征使用串联方式相连接以得到融合特征,再将不同年龄的融合特征输入双向长短期记忆中,以学习不同年龄融合特征间的相关性,进而完成年龄预测。在公开数据集FG-NET和MORPH上的实验结果表明,该算法通过利用脸部多尺度融合特征和不同年龄融合特征间的相关性,能够显著提高年龄预测的准确性和鲁棒性。

关键词: 深度学习, 卷积神经网络, 递归神经网络, 脸部图像, 年龄预测

Abstract: In order to improve the accuracy of facial age prediction,this paper proposes an algorithm for effective age estimation based on a deep learning.Based on the preprocessed face images,the images of the parts around the left eye,right eye,nose and mouth are obtained.Then by using the Inception V4 model in the deep learning database of TensorFlow,the multiscale local features of these four face parts are extracted and connected in series to obtain the fused features.The fused features of different ages are input into bidirectional Long Short-Time Memory(LSTM) to learn the correlation between the fused features of different ages,completing the age prediction.The experimental results on the open data sets FG NET and MORPH show that the algorithm can significantly improve the accuracy and robustness of age prediction by using the correlation between the fused multiscale facial features and the fused features of different ages.

Key words: deep learning, Convolutional Neural Network(CNN), Recursive Neural Network(RNN), facial image, age prediction

中图分类号: