作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (5): 16-23. doi: 10.19678/j.issn.1000-3428.0060354

• 热点与综述 • 上一篇    下一篇

基于局部生成对抗网络的水上低照度图像增强

刘文1,2,3, 杨梅芳1,2, 聂江天4, 章阳3, 杨和林4, 熊泽辉5   

  1. 1. 武汉理工大学 航运学院, 武汉 430063;
    2. 武汉理工大学 内河航运技术湖北省重点实验室, 武汉 430063;
    3. 武汉理工大学 计算机科学与技术学院, 武汉 430063;
    4. 南洋理工大学 计算机科学与工程学院, 新加坡 639798;
    5. 新加坡科技与设计大学 信息系统技术与设计系, 新加坡 487372
  • 收稿日期:2020-12-22 修回日期:2021-01-22 发布日期:2021-02-02
  • 作者简介:刘文(1987-),男,副教授、博士,主研方向为计算机视觉、智能交通系统;杨梅芳,硕士研究生;聂江天,博士研究生;章阳,副教授、博士;杨和林,博士;熊泽辉(通信作者),助理教授、博士。
  • 基金资助:
    国家自然科学基金(51609195);中央高校基本科研业务费专项资金(2020-zy-197)。

Low-Light Maritime Image Enhancement Based on Local Generative Adversarial Network

LIU Wen1,2,3, YANG Meifang1,2, NIE Jiangtian4, ZHANG Yang3, YANG Helin4, XIONG Zehui5   

  1. 1. School of Navigation, Wuhan University of Technology, Wuhan 430063, China;
    2. Hubei Key Laboratory of Inland Shipping Technology, Wuhan University of Technology, Wuhan 430063, China;
    3. School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430063, China;
    4. School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
    5. Pillar of Information Systems Technology and Design, Singapore University of Technology and Design, Singapore 487372, Singapore
  • Received:2020-12-22 Revised:2021-01-22 Published:2021-02-02

摘要: 针对低照度条件下获取的水上图像亮度和对比度低以及质量差的问题,提出一种基于局部生成对抗网络的图像增强方法。以残差网络作为基本框架设计生成器,通过加入金字塔扩张卷积模块提取与学习图像深层特征和多尺度空间特征,从而减少结构信息丢失。设计一个自编码器作为注意力网络,估计图像中的光照分布并指导图像不同亮度区域的自适应增强。构建具有判别图像局部区域能力的判别器结构,约束生成器输出增强效果更加自然的图像。实验结果表明,该方法能够有效增强水上低照度图像,场景还原和细节保留能力优于SRIE和LIME等方法。

关键词: 低照度图像增强, 深度学习, 生成对抗网络, 金字塔扩张卷积, 自适应增强

Abstract: To address the problems of the maritime images taken in low-light,including low brightness,low contrast and poor quality,this paper proposes an image enhancement method based on a local Generative Adversarial Network(GAN).The generator is designed by taking the residual network as the backbone,and a pyramid dilated convolution module is introduced to extract and learn the deep features and multi-scale spatial features of images,reducing the loss of structure information.At the same time,an autoencoder is designed as an attention network to estimate the light distribution of the image and guide the adaptive enhancement for regions of different brightness.Finally,a discriminator that is able to distinguish local regions of the image is designed to constrain the generator to output images with more natural enhancement effects.Experimental results show that the proposed method can effectively enhance maritime images taken in low-light.Compared with SRIE,LIME and other traditional methods,the proposed method can restore scenes better and retain more details.

Key words: low-light image enhancement, deep learning, Generative Adversarial Network(GAN), Pyramid Dilated Convolution(PDC), adaptive enhancement

中图分类号: