[1] XU Shaoping,LIN Guanxi,ZENG Xiaoxia,et al.Research and prospect of stereoscopic image quality-aware feature extraction[J].Computer Engineering,2018,44(6):239-248.(in Chinese)徐少平,林官喜,曾小霞,等.立体图像质量感知特征提取的研究与展望[J].计算机工程,2018,44(6):239-248. [2] WANG Z,BOVIK A C.Modern image quality assessment[J].Synthesis Lectures on Image Video and Multimedia Processing,2006,2(1):1-56. [3] WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. [4] ZHANG Lin,SHEN Ying,LI Hongyu.VSI:a visual saliency-induced index for perceptual image quality assessment[J].IEEE Transactions on Image Processing,2014,23(10):4270-4281. [5] YANG Chunling.Gradient-based structural similarity for image quality assessment[J].Journal of South China University of Technology (Natural Science Edition),2006,9(34):22-25. [6] WANG Z,SIMONCELLI E P,BOVIK A C.Multiscale structural similarity for image quality assessment[C]//Proceedings of the 37th Asilomar Conference on Signals,Systems & Computers.Washington D.C.,USA:IEEE Press,2003:1122-1130. [7] LI C F,BOVIK A C.Three-component weighted structural similarity index[EB/OL].[2020-02-10].http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3E96A06DFCD150EFB66EF90C0CDDCA72?doi=10.1.1.153.1729&rep=rep1&type=pdf. [8] MA Lin,LI Songnan,ZHANG Fan,et al.Reduced-reference image quality assessment using reorganized DCT-based image representation[J].IEEE Transactions on Multimedia,2011,13(4):824-829. [9] WU Xin,ZHANG Huanlong,SHU Yunxing.Mosaic image quality evaluation method based on visual perception[J].Computer Engineering,2008,34(18):220-222.(in Chinese)武新,张焕龙,舒云星.基于视觉感知的镶嵌图像质量评价方法[J].计算机工程,2008,34(18):220-222. [10] XIE Rui,SHAO Kun,HUO Xing,et al.An improved DIQaM_FR/NR image quality assessment model[J].Computer Engineering,2020,46(8):258-263,270.(in Chinese)谢瑞,邵堃,霍星,等.一种改进的DIQaM_FR/NR图像质量评价模型[J].计算机工程,2020,46(8):258-263,270. [11] YAO Wang,LIU Yunpeng,ZHU Changbo.Deep learning of full-reference image quality assessment based on human visual properties[J].Infrared and Laser Engineering,2018,285(7):39-46.(in Chinese)姚旺,刘云鹏,朱昌波.基于人眼视觉特性的深度学习全参考图像质量评价方法[J].红外与激光工程,2018,285(7):39-46. [12] XUE W F,ZHANG L,MOU X,et al.Gradient magnitude similarity deviation:a highly efficient perceptual image quality index[J].IEEE Transactions on Image Processing,2014,23(2):684-695. [13] KUMAR V,BAWA V S.No reference image quality assessment metric based on regional mutual information among images[EB/OL].[2020-02-10].https://arxiv.org/pdf/1901.05811.pdf. [14] LIU Yutao,GU Ke,ZHANG Yongbing,et al.Unsupervised blind image quality evaluation via statistical measurements of structure,naturalness and perception[J].IEEE Transactions on Circuits and Systems for Video Technology,2020,30(4):929-943. [15] MOORTHY A,BOVIK A.A two-step framework for constructing blind image quality indices[J].IEEE Signal Processing Letters,2010,17(5):513-516. [16] SAAD M A,BOVIK A C,CHARRIER C.Blind image quality assessment:a natural scene statistics approach in the DCT domain[J].IEEE Transactions on Image Processing,2012,21(8):3339-3352. [17] KANG Le,YE Peng,LI Yi,et al.Convolutional neural networks for no-reference image quality assessment[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2014:1733-1740. [18] BIANCO S,CELONA L,NAPOLETANO P,et al.On the use of deep learning for blind image quality assessment[EB/OL].[2020-02-10].https://xueshu.baidu.com/usercenter/paper/show?paperid=2ac3525e407c5c12640b559299838514&site=xueshu_se. [19] ZENG H,ZHANG L,BOVIK A C.A probabilistic quality representation approach to deep blind image quality prediction[EB/OL].[2020-02-10].https://arxiv.org/pdf/1708.08190.pdf. [20] KIM J,LEE S.Fully deep blind image quality predictor[J].IEEE Signal Processing,2017,11(1):206-220. [21] LI Ang,SONG Xiaoying.Remote sensing image superresolution reconstruction based on GAN[J].Optics & Optoelectronic Technology,2019,17(6):39-44.(in Chinese)李昂,宋晓莹.基于生成对抗网络的遥感图像超分辨率重建[J].光学与光电技术,2019,17(6):39-44. [22] PONOMARENKO N,IEREMEIEV O,LUKIN V,et al.Color image database TID2013:peculiarities and preliminary results[C]//Proceedings of European Workshop on Visual Information Processing. Washington D.C.,USA:IEEE Press,2013:1-12. [23] SHEIKH H R,SABIR M F,BOVIK A C.A statistical evaluation of recent full reference image quality assessment algorithms[J].IEEE Transactions on Image Processing,2006,15(11):3440-3451. [24] CHANDER,DAMON M.Most apparent distortion:full-reference image quality assessment and the role of strategy[J].Journal of Electronic Imaging,2010,19(1):12-36. [25] PONOMARENKO N,LUKIN V,EGIAZARIAN K,et al.Color image database for evaluation of image quality metrics[C]//Proceedings of IEEE Workshop on Multimedia Signal Processing.Washington D.C.,USA:IEEE Press,2008:1223-1236. [26] MITTAL A,MOORTHY A K,BOVIK A C.No-reference image quality assessment in the spatial domain[J].IEEE Transactions on Image Processing,2012,21(12):4695-4708. [27] YE P,KUMAR J,KANG L,et al.Unsupervised feature learning framework for no-reference image quality assessment[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2012:1336-1348. [28] ZHANG Peng,ZHOU Wengang,WU Lei,et al.SOM:semantic obviousness metric for image quality assessment[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1-6. [29] MOORTHY A K,BOVIK A C.Blind image quality assessment:from natural scene statistics to perceptual quality[J].IEEE Transactions on Image Processing,2012,20(12):3350-3364. |