作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (11): 247-256. doi: 10.19678/j.issn.1000-3428.0066610

• 图形图像处理 • 上一篇    下一篇

水下图像增强复原对深度学习目标检测精度的影响研究

杨谢柳1, 门国文1, 梁文峰1, 王丹1, 谢正义1, 范慧杰2,*   

  1. 1. 沈阳建筑大学 机械工程学院, 沈阳 110168
    2. 中国科学院沈阳自动化研究所 机器人学国家重点实验室, 沈阳 110016
  • 收稿日期:2022-12-26 出版日期:2023-11-15 发布日期:2023-03-03
  • 通讯作者: 范慧杰
  • 作者简介:

    杨谢柳(1985—),女,副教授、博士,主研方向为计算机视觉、图像处理

    门国文,硕士研究生

    梁文峰,教授、博士

    王丹,副教授、博士

    谢正义,副教授

  • 基金资助:
    国家自然科学基金(61973224); 兴辽英才计划"青年拔尖人才"(XLYC2007186); 辽宁省教育厅面上项目(LJKZ0571); 道路施工技术与装备教育部重点实验室开放基金(300102259506)

Research on the Influence of Underwater Image Enhancement Restoration on the Accuracy of Deep Learning Object Detection

Xieliu YANG1, Guowen MEN1, Wenfeng LIANG1, Dan WANG1, Zhengyi XIE1, Huijie FAN2,*   

  1. 1. School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
    2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
  • Received:2022-12-26 Online:2023-11-15 Published:2023-03-03
  • Contact: Huijie FAN

摘要:

因水下环境的特殊性,水下光学图像往往存在色偏、模糊、对比度低等退化现象。为恢复颜色正常、清晰的水下图像,大量的水下图像增强复原方法已被提出,但是现有的水下图像增强复原方法主要以提高水下图像的视觉效果为直接目标,对基于深度学习的水下目标检测精度的影响尚不明确。因此,使用14种典型的水下图像增强复原方法和3种典型的基于深度学习的目标检测模型,在URPC2018和URPC2019数据集上从训练集与测试集的域差异、训练集的域数量、训练集的图像数量等方面,详细深入地探讨图像增强复原方法对基于深度学习的目标检测模型精度的影响,并自建数据集进行跨数据集测试。实验结果表明,在训练集和测试集均属同一数据集时,水下图像增强复原方法无论作为图像预处理方法还是数据增强方法,对深度学习目标检测精度的提升都无明显效果,但是在跨数据集检测时,借助水下图像增强复原方法能够大幅提升深度学习目标检测精度,mAP最高可提高13.6个百分点。

关键词: 水下图像, 图像增强, 图像复原, 目标检测, 跨数据集

Abstract:

Due to the particularity of the underwater environment, underwater optical images often suffer from degradation issues such as color cast, blur, and low contrast. To restore these underwater images to their natural and clear colors, numerous methods for enhancing and restoring underwater images have been proposed. However, the existing underwater image enhancement restoration techniques primarily focus on improving the visual quality of underwater images. Their impact on the accuracy of underwater object detection using deep learning methods remains uncertain. Therefore, this study conducts a detailed and comprehensive exploration of the influence of fourteen typical underwater image enhancement and restoration methods and three common deep learning-based object detection models on the accuracy of deep learning-based object detection models. The analysis includes URPC2018 and URPC2019 datasets and considers factors such as domain variations between training and testing sets, the number of domains in the training set, the quantity of images in the training set, and self-created datasets for cross-dataset testing. The experimental results show that when both the training and test sets belong to the same dataset, underwater image enhancement and restoration methods, whether used as image preprocessing methods or data enhancement methods, do not significantly improve the detection accuracy of deep learning objects. However, when detecting across datasets, using underwater image enhancement and restoration methods can significantly enhance the detection accuracy of deep learning objects, with mAP increasing by up to 13.6 percentage points.

Key words: underwater image, image enhancement, image restoration, object detection, cross-dataset