1 |
LI K Y, LI G L. Approximate query processing: what is new and where to go?. Data Science and Engineering, 2018, 3(4): 379- 397.
doi: 10.1007/s41019-018-0074-4
|
2 |
CHAUDHURI S, DING B L, KANDULA S. Approximate query processing: no silver bullet[C]//Proceedings of 2017 ACM International Conference on Management of Data. New York, USA: ACM Press, 2017: 511-519.
|
3 |
ACHARYA S, GIBBONS P B, POOSALA V. Congressional samples for approximate answering of group-by queries[C]//Proceedings of 2000 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2000: 487-498.
|
4 |
NGUYEN T D, SHIH M H, PARVATHANENI S S, et al. Random sampling for group-by queries[C]//Proceedings of the 36th IEEE International Conference on Data Engineering. Washington D. C., USA: IEEE Press, 2020: 541-552.
|
5 |
袁喆, 文继荣, 魏哲巍, 等. 大数据实时交互式分析. 软件学报, 2020, 31(1): 162- 182.
URL
|
|
YUAN Z, WEN J R, WEI Z W, et al. Real-time interactive analysis on big data. Journal of Software, 2020, 31(1): 162- 182.
URL
|
6 |
宋雨萌, 谷峪, 李芳芳, 等. 人工智能赋能的查询处理与优化新技术研究综述. 计算机科学与探索, 2020, 14(7): 1081- 1103.
URL
|
|
SONG Y M, GU Y, LI F F, et al. Survey on AI powered new techniques for query processing and optimization. Journal of Frontiers of Computer Science & Technology, 2020, 14(7): 1081- 1103.
URL
|
7 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks. Communications of the ACM, 2020, 63(11): 139- 144.
doi: 10.1145/3422622
|
8 |
HELLERSTEIN J M, HAAS P J, WANG H J. Online aggregation[C]//Proceedings of 1997 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 1997: 171-182.
|
9 |
LI F F, WU B, YI K, et al. Wander join: online aggregation via random walks[C]//Proceedings of 2016 International Conference on Management of Data. New York, USA: ACM Press, 2016: 615-629.
|
10 |
GIBBONS P B, MATIAS Y, POOSALA V. Fast incremental maintenance of approximate histograms. ACM Transactions on Database Systems, 2002, 27(3): 261- 298.
doi: 10.1145/581751.581753
|
11 |
GAROFALAKIS M, GIBBONS P B. Wavelet synopses with error guarantees[C]//Proceedings of 2002 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2002: 476-487.
|
12 |
PENG J L, ZHANG D X, WANG J N, et al. AQP++: connecting approximate query processing with aggregate precomputation for interactive analytics[C]//Proceedings of 2018 International Conference on Management of Data. New York, USA: ACM Press, 2018: 1477-1492.
|
13 |
MA Q Z, TRIANTAFILLOU P. DBEst: revisiting approximate query processing engines with machine learning models[C]//Proceedings of 2019 International Conference on Management of Data. New York, USA: ACM Press, 2019: 1553-1570.
|
14 |
MA Q, SHANGHOOSHABAD A M, ALMASI M, et al. Learned approximate query processing: make it light, accurate and fast[C]//Proceedings of 2021 International Conference on Innovative Data Systems. New York, USA: ACM Press, 2021: 15-22.
|
15 |
ZHANG M, WANG H. LAQP: learning-based approximate query processing. Information Sciences, 2021, 546, 1113- 1134.
doi: 10.1016/j.ins.2020.09.070
|
16 |
|
17 |
THIRUMURUGANATHAN S, HASAN S, KOUDAS N, et al. Approximate query processing for data exploration using deep generative models[C]//Proceedings of the 36th IEEE International Conference on Data Engineering. Washington D. C., USA: IEEE Press, 2020: 1309-1320.
|
18 |
HILPRECHT B, SCHMIDT A, KULESSA M, et al. DeepDB. Proceedings of the VLDB Endowment, 2020, 13(7): 992- 1005.
doi: 10.14778/3384345.3384349
|
19 |
AGARWAL S, MOZAFARI B, PANDA A, et al. BlinkDB: queries with bounded errors and bounded response times on very large data[C]//Proceedings of the 8th ACM European Conference on Computer Systems. New York, USA: ACM Press, 2013: 29-42.
|
20 |
AGARWAL S, MILNER H, KLEINER A, et al. Knowing when you're wrong: building fast and reliable approximate query processing systems[C]//Proceedings of 2014 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2014: 481-492.
|
21 |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 5769-5779.
|
22 |
|
23 |
|
24 |
|
25 |
BANI F C D, GIRSANG A S. Implementation of database massively parallel processing system to build scalability on process data warehouse. Procedia Computer Science, 2018, 135, 68- 79.
doi: 10.1016/j.procs.2018.08.151
|
26 |
徐石磊, 魏星, 江红, 等. 分布式数据库系统中的并行分组聚合实现. 华东师范大学学报(自然科学版), 2018,(5): 56- 66.
URL
|
|
XU S L, WEI X, JIANG H, et al. Implementation of parallel grouping aggregation in distributed database system. Journal of East China Normal University(Natural Science), 2018,(5): 56- 66.
URL
|