1 |
LLOYD-JONES D M, WANG T J, LEIP E P, et al. Lifetime risk for development of atrial fibrillation: the Framingham heart study. Circulation, 2004, 110(9): 1042- 1046.
doi: 10.1161/01.CIR.0000140263.20897.42
|
2 |
刘晓勃, 马长生. 2019 HRS/ACP心房颤动筛查和教育倡议的解读. 中国循环杂志, 2019, 34(S01): 4- 6.
|
|
LIU X B, MA C S. Interpretation of the 2019 HRS/ACP atrial fibrillation screening and education initiative. Chinese Circulation Journal, 2019, 34(S01): 4- 6.
|
3 |
RAJKOMAR A, OREN E, CHEN K, et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018, 1, 18- 23.
doi: 10.1038/s41746-018-0029-1
|
4 |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278- 2324.
doi: 10.1109/5.726791
|
5 |
LEUNG PATRICK CHEUNG B, DAHL D. Deep learning from electronic medical records using attention-based cross-modal convolutional neural networks[C]//Proceedings of IEEE EMBS International Conference on Biomedical & Health Informatics. Washington D. C., USA: IEEE Press, 2018: 222-225.
|
6 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9(8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
7 |
AN Y, HUANG N J, CHEN X L, et al. High-risk prediction of cardiovascular diseases via attention-based deep neural networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(3): 1093- 1105.
doi: 10.1109/TCBB.2019.2935059
|
8 |
HE R, WU X, SUN Z N, et al. Wasserstein CNN: learning invariant features for NIR-VIS face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1761- 1773.
doi: 10.1109/TPAMI.2018.2842770
|
9 |
GAN Z Y, YU Y, WANG R, et al. CNN-based speaker verification and speech recognition in Tibetan. Journal of Physics: Conference Series, 2020, 1693(1): 012180.
doi: 10.1088/1742-6596/1693/1/012180
|
10 |
CICONTE G, CONTI M, EVANGELISTA M, et al. Atrial fibrillation in autoimmune rheumatic diseases: from pathogenesis to treatment. Reviews on Recent Clinical Trials, 2018, 13(3): 170- 175.
doi: 10.2174/1574887113666180418110721
|
11 |
DE VOS C B, PISTERS R, NIEUWLAAT R, et al. Progression from paroxysmal to persistent atrial fibrillation clinical correlates and prognosis. Journal of the American College of Cardiology, 2010, 55(8): 725- 731.
doi: 10.1016/j.jacc.2009.11.040
|
12 |
JOHNSON A E W, POLLARD T J, SHEN L, et al. MIMIC-III, a freely accessible critical care data base. Scientific Data, 2016, 3, 160035.
doi: 10.1038/sdata.2016.35
|
13 |
XIE F, YUAN H, NING Y, et al. Deep learning for temporal data representation in electronic health records: a systematic review of challenges and methodologies. Journal of Biomedical Informatics, 2022, 126, 103980.
doi: 10.1016/j.jbi.2021.103980
|
14 |
GAO J Y, XIAO C, GLASS L M, et al. COMPOSE: cross-modal pseudo-siamese network for patient trial matching[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2020: 803-812.
|
15 |
LANDI I, GLICKSBERG B S, LEE H C, et al. Deep representation learning of electronic health records to unlock patient stratification at scale. Npj Digital Medicine, 2020, 3, 96- 105.
doi: 10.1038/s41746-020-0301-z
|
16 |
WANG Z, ZHU Y, LI D, et al. Feature rearrangement based deep learning system for predicting heart failure mortality. Computer Methods and Programs in Biomedicine, 2020, 191, 105383.
doi: 10.1016/j.cmpb.2020.105383
|
17 |
AN Y, MAO Y, ZHANG L, et al. RAHM: relation augmented hierarchical multi-task learning framework for reasonable medication stocking. Journal of Biomedical Informatics, 2020, 108, 103502.
doi: 10.1016/j.jbi.2020.103502
|
18 |
BARBIERI S, KEMP J, PEREZ-CONCHA O, et al. Benchmarking deep learning architectures for predicting readmission to the ICU and describing patients-at-risk. Scientific Reports, 2020, 10, 1111- 1119.
doi: 10.1038/s41598-020-58053-z
|
19 |
CHU J B, DONG W, HUANG Z X. Endpoint prediction of heart failure using electronic health records. Journal of Biomedical Informatics, 2020, 109, 103518.
doi: 10.1016/j.jbi.2020.103518
|
20 |
MA F L, CHITTA R, ZHOU J, et al. Dipole: diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2017: 1903-1911.
|
21 |
XU E L, ZHAO S W, MEI J, et al. Multiple MACE risk prediction using multi-task recurrent neural network with attention[C]//Proceedings of IEEE International Conference on Healthcare Informatics. Washington D. C., USA: IEEE Press, 2019: 1-2.
|
22 |
|
23 |
CHEN P P, DONG W, WANG J L, et al. Interpretable clinical prediction via attention-based neural network. BMC Medical Informatics and Decision Making, 2020, 20(3): 1- 9.
|
24 |
XIANG Y, JI H Y, ZHOU Y J, et al. Asthma exacerbation prediction and risk factor analysis based on a time-sensitive, attentive neural network: retrospective cohort study. Journal of Medical Internet Research, 2020, 22(7): e16981.
doi: 10.2196/16981
|
25 |
WANG Z C, LI H R, LIU L C, et al. Predictive multi-level patient representations from electronic health records[C]//Proceedings of IEEE International Conference on Bioinformatics and Biomedicine. Washington D. C., USA: IEEE Press, 2020: 987-990.
|
26 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318- 327.
doi: 10.1109/TPAMI.2018.2858826
|