作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (11): 293-301. doi: 10.19678/j.issn.1000-3428.0066133

• 开发研究与工程应用 • 上一篇    下一篇

基于双通道混合神经网络的房颤风险预测模型

柯博文1,2, 杨湘1,2, 陈艳红3   

  1. 1. 武汉科技大学 计算机科学与技术学院, 武汉 430065
    2. 国家新闻出版署富媒体数字出版内容组织与知识服务重点实验室, 北京 100038
    3. 武汉亚洲心脏病医院 心血管内科, 武汉 430022
  • 收稿日期:2022-10-31 出版日期:2023-11-15 发布日期:2023-02-07
  • 作者简介:

    柯博文(1999—),男,硕士研究生,主研方向为医疗大数据

    杨湘,副教授、博士

    陈艳红,博士、副主任医师

  • 基金资助:
    国家自然科学基金(U1836118); 武汉市重点研发计划(2022012202015070); 武汉市知识创新专项曙光计划项目(2023010201020409)

Risk Prediction Model of Atrial Fibrillation Based on Dual Channel Hybrid Neural Network

Bowen KE1,2, Xiang YANG1,2, Yanhong CHEN3   

  1. 1. School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, China
    2. The Key Laboratory of Rich-Media Knowledge Organization and Service of Digital Publishing Content Institute of Scientific and Technical Information of China, Beijing 100038, China
    3. Internal Medicine-Cardiovascular Department, Wuhan Asia Heart Hospital, Wuhan 430022, China
  • Received:2022-10-31 Online:2023-11-15 Published:2023-02-07

摘要:

心房颤动是一种具有隐秘性的心血管疾病,发病时具有较高的致命性,因此,对其进行预判和早筛尤为重要。电子健康病历(EHR)作为常规的检查结果记录方式,相较于心电图(ECG)数据,能使房颤的预测和筛查更具普遍性。现有的基于EHR的房颤风险预测方法缺乏对房颤重要指标的关注,同时传统的基于卷积的模型无法提取到医疗诊断之间的依赖关系。提出一种双通道混合神经网络学习模型FR-ANN。该模型分两个通道进行特征提取,一个通道利用注意力机制Attention提取医疗事件之间的潜在关系,另一个通道对房颤的部分重要指标进行特征提取,这些与房颤相关的重要指标在医生的协助下筛选得到。实验结果表明,所提模型在武汉亚洲心脏病医院的私有数据集上的AUC值为80.1%,F1值为68.1%,在MIT的公共数据集MIMIC-Ⅲ上的AUC值为71.4%,F1值为62.8%,相比基于EHR数据的疾病风险预测模型在房颤风险预测任务上的表现更好。此外,注意力机制的引入提供了事后可解释性,具有临床意义。

关键词: 心房颤动, 疾病分类, 电子健康病历, 注意力机制, 神经网络

Abstract:

Atrial fibrillation is a type of concealed cardiovascular disease with highly fatal consequences. Therefore, early prediction and screening of atrial fibrillation are particularly important. The Electronic Health Record (EHR), which is a routine recording method for examination results, can make prediction and screening of atrial fibrillation more universal than Electrocardiogram(ECG)data. Existing EHR-based risk prediction methods for atrial fibrillation do not consider important indicators of atrial fibrillation, and traditional convolution-based models cannot extract the dependence between medical diagnoses. This study proposes a dual-channel hybrid neural network learning model, called FR-ANN. In this model, two channels are used for feature extraction. One channel uses attention to extract the potential relationship between medical events, and the other channel extracts important indicators of atrial fibrillation. The atrial fibrillation-related important indicators were screened by doctors. The experimental results show that the proposed model has an Area Under Curve(AUC)value of 80.1% and an F1 value of 68.1% on the private data set of Wuhan Asian Heart Hospital, and an AUC value of 71.4% and an F1 value of 62.8% on the public data set of MIT-Ⅲ. Compared with the disease risk prediction model based on EHR data, the proposed method performed better in atrial fibrillation risk prediction tasks. In addition, the introduction of attention mechanisms provides ex-post interpretability and has clinical significance.

Key words: atrial fibrillation, disease classification, electronic medical record, attention mechanism, neural network