[1] GOODFELLOW I J, POUGET-ABADIE J, M-IRZA M, et al. Generative adversarial nets[EB/OL]. [2020-05-07]. https://www.researchgate.net/publication/319770355_Generative_Adversarial_Nets. [2] MERTENS J F, ZAMIR S.The value of two-person zero-sum repeated games with lack of information on both sides[J]. International Journal of Game Theory, 1971, 1(1): 39-64. [3] RATLIFF L J, BURDEN S A, SASTRY S S.Charact-erization and computation of local Nash equilibria in continuous games[C]//Proceedings of 2013 Annual Allerton Conference on Communication, Control, and Computing.Washington D.C., USA:IEEE Press, 2013:917-924. [4] 卢健, 孙怡.结合稀疏编码模型的多帧图像超分辨率重建[J]. 计算机工程, 2015, 41(5): 264-269, 273. LU J, SUN Y.Multi-frame image super-resolution reconstruction combined with sparse coding model[J]. Computer Engineering, 2015, 41(5): 264-269, 273.(in Chinese). [5] 熊亚辉, 陈东方, 王晓峰.基于多尺度反向投影的图像超分辨率重建算法[J]. 计算机工程, 2020, 46(7): 251-259. XIONG Y H, CHEN D F, WANG X F.Super resolution image reconstruction algorithm based on multi-scale back projection[J]. Computer Engineering, 2020, 46(7): 251-259.(in Chinese) [6] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2223-2232. [7] CHEN Y S, WANG Y C, KAO M H, et al. Deep photo enhancer:unpaired learning for image enhancement from photographs with gans[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:6306-6314. [8] KIM T, CHA M, KIM H, et al. Learning to discover cross-domain relations with generative adversarial networks[C]//Proceedings of 2017 International Conference on Machine Learning.Washington D.C., USA:IEEE Press, 2017:1857-1865. [9] CHEN Y, LAI Y K, LIU Y J.Cartoongan:generative adversarial networks for photo cartoonization[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:9465-9474. [10] MIRZA M, OSINDERO S.Conditional generative adversarial nets[EB/OL]. [2020-05-07]. https://arxiv.org/pdf/1411. 1784.pdf. [11] RADFORD A, METZ L, CHINTALA S.Unsupervised representation learning with deep convolutional genera-tive adversarial networks[EB/OL]. [2020-05-07]. https://arxiv.org/pdf/1511.06434.pdf. [12] ARJOVSKY M, CHINTALA S, BOTTOU L.Wasserstein gan[EB/OL]. [2020-05-07]. https://arxiv.org/pdf/1701.07875.pdf. [13] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein gans[EB/OL]. [2020-05-07]. https://www.researchgate.net/publication/315765101_Improved_Training_of_Wasserstein_GANs. [14] ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[EB/OL]. [2020-05-07]. https://arxiv.org/pdf/1805.08318.pdf. [15] BROCK A, DONAHUE J, SIMONYAN K.Large scale gan training for high fidelity natural image synthesis[EB/OL]. [2020-05-07]. https://arxiv.org/pdf/1809.11096.pdf. [16] 刘其开, 姜代红, 李文吉.基于分段损失的生成对抗网络[J]. 计算机工程, 2019, 45(5): 155-160, 168. LIU Q K, JIANG D H, LI W J.Generative adversarial network based on piecewise loss[J]. Computer Engineering, 2019, 45(5): 155-160, 168.(in Chinese) [17] SHAHAM T R, DEKEL T, MICHAELI T.Singan:learning a generative model from a single natural image[C]//Proceedings of 2019 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:4570-4580. [18] IOFFE S, SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covaryate shift[EB/OL]. [2020-05-07]. https://arxiv.org/pdf/1502.03167.pdf. [19] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [20] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversaryal networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1125-1134. [21] ZHOU B L, LAPEDRIZA A, XIAO J X, et al. Learning deep features for scene recognition using places database[EB/OL]. [2020-05-07]. https://www.researchgate.net/publication/279839496_Learning_Deep_Features_for_Scene_Recognition_using_Places_Database. |