作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (8): 271-276,283. doi: 10.19678/j.issn.1000-3428.0058711

• 图形图像处理 • 上一篇    下一篇

基于单幅图像学习的生成对抗网络模型

朱海琦, 李宏, 李定文   

  1. 东北石油大学 电气信息工程学院, 黑龙江 大庆, 163000
  • 收稿日期:2020-06-22 修回日期:2020-08-13 发布日期:2020-08-20
  • 作者简介:朱海琦(1993-),男,硕士研究生,主研方向为深度学习、图像处理;李宏(通信作者),教授、博士;李定文,硕士研究生。
  • 基金资助:
    国家科技重大专项(2017ZX05019-005);黑龙江省自然科学基金(LH2019F004)。

Generative Adversarial Network Model Based on Single Image Learning

ZHU Haiqi, LI Hong, LI Dingwen   

  1. School of Electrical Engineering and Information, Northeast Petroleum University, Daqing, Heilongjiang 163000, China
  • Received:2020-06-22 Revised:2020-08-13 Published:2020-08-20

摘要: 将卷积神经网络引入生成对抗网络可提高所生成图像的质量,但网络的感受野较小且难以学习各个特征通道之间的重要关系。在SinGAN网络的基础上,提出一种能从单幅图像中学习的生成对抗网络模型。在SinGAN网络的生成器和鉴别器中引入Inception V2模块以增加网络宽度扩大感受野,采用多个卷积核提取图像特征并进行特征融合,利用SENet模块学习各个通道的重要程度以获取更好的图像表征。实验结果表明,与Bicubic和SinGAN模型相比,该模型峰值信噪比和结构相似性值更高,可有效提升图像生成质量。

关键词: 深度学习, 生成对抗网络, 生成模型, 注意力, 对抗学习

Abstract: By introducing the Convolutional Neural Network(CNN) into the Generative Adversarial Network(GAN), the quality of images generated by GAN can be improved. However, limited by the size of the receptive field, the network cannot fully learn the important relationships between the feature channels. To address the problem, a SinGAN-based GAN model which can learn from a single image is proposed. By introducing the Inception V2 module into the generator and discriminator of SinGAN, the network width is increased, and the receptive field is extended. Then multiple convolution cores are used to extract image features and fuse them. At the same time, the SENet module is used to learn the importance of each channel to obtain better image representation. Experimental results show that compared with Bicubic and SinGAN models, the proposed model has higher Peak Signal to Noise Ratio(PSNR) and Structural Similarity(SSIM), and significantly improves the quality of the generated images.

Key words: deep learning, Generative Adversarial Network(GAN), generative model, attention, adversarial learning

中图分类号: