[1] CHEN X, JIA S, XIANG Y.A review:knowledge reasoning over knowledge graph[J].Expert Systems with Applications, 2020, 141(5):1-21. [2] SUCHANEK F M, KASNECI G, WEIKUM G.YAGO:a large ontology from Wikipedia and WordNet[J].Journal of Web Semantics, 2008, 6(3):203-217. [3] BOLLACKER K, EVANS C, PARITOSH P, et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of 2008 ACM SIGMOD International Conference on Management of Data.New York, USA:ACM Press, 2008:1247-1250. [4] AMILLER G.WordNet:a lexical database for English[J].Communications of the ACM, 1995, 38(11):39-41. [5] LI F Y, LI Y, SHANG C J, et al.Fuzzy knowledge-based prediction through weighted rule interpolation[J].IEEE Transactions on Cybernetics, 2020, 50(10):4508-4517. [6] WU C, LIU S, ZENG Z Y, et al.Knowledge graph-based multi-context-aware recommendation algorithm[J].Information Sciences, 2022, 595:179-194. [7] 刘知远, 孙茂松, 林衍凯, 等.知识表示学习研究进展[J].计算机研究与发展, 2016, 53(2):247-261. LIU Z Y, SUN M S, LIN Y K, et al.Knowledge representation learning:a review[J].Journal of Computer Research and Development, 2016, 53(2):247-261.(in Chinese) [8] NEELAKANTAN A, ROTH B, MCCALLUM A.Compositional vector space models for knowledge base completion[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2015:156-166. [9] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al.A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 2(Short Papers). Stroudsburg, USA:Association for Computational Linguistics, 2018:327-333. [10] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2018:1811-1818. [11] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Cambridge, USA:MIT Press, 2014:2672-2680. [12] WANG P F, LI S Y, PAN R.Incorporating GAN for negative sampling in knowledge representation learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2018:1-10. [13] CAI L W, WANG W Y.KBGAN:adversarial learning for knowledge graph embeddings[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1(Long Papers). Stroudsburg, USA:Association for Computational Linguistics, 2018:1470-1480. [14] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of NIPS'13.Cambridge, USA:MIT Press, 2013:2787-2795. [15] LIN Y, LIU Z, LUAN H, et al.Modeling relation paths for representation learning of knowledge bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2015:705-714. [16] MIKOLOV T, SUTSKEVER I, CHEN K, et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Nedava, USA:NIPS Press, 2013:3111-3119. [17] WANG Z, ZHANG J, FENG J, et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, USA:AAAI Press, 2014:1112-1119. [18] LIN Y, LIU Z, SUN M, et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2015:2181-2187. [19] JI G L, HE S Z, XU L H, et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Volume 1(Long Papers). Stroudsburg, USA:Association for Computational Linguistics, 2015:687-696. [20] JIA Y, WANG Y, LIN H, et al.Locally adaptive translation for knowledge graph embedding[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2016:992-998. [21] HE S Z, LIU K, JI G L, et al.Learning to represent knowledge graphs with Gaussian embedding[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.New York, USA:ACM Press, 2015:623-632. [22] XIAO H, HUANG M L, ZHU X Y.TransG:a generative model for knowledge graph embedding[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Volume 1(Long Papers). Stroudsburg, USA:Association for Computational Linguistics, 2016:2316-2325. [23] NICKEL M, TRESP V, KRIEGEL H P.A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning.New York, USA:ICML Press, 2011:809-816. [24] YANG B, YIH S W, HE X, et al.Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of International Conference on Learning Representations.San Diego, USA:ICLR Press, 2015:12-24. [25] TROUILLON T, WELBL J, RIEDEL S, et al.Complex embeddings for simple link prediction[C]//Proceedings of International Conference on Machine Learning.New York, USA:ICML Press, 2016:2071-2080. [26] LIU Q, JIANG H, EVDOKIMOV A, et al.Probabilistic reasoning via deep learning:neural association models[EB/OL].[2022-02-10].https://arxiv.org/abs/1603.07704. [27] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Cambridge, USA:MIT Press, 2017:6000-6010. [28] WU Z H, PAN S R, CHEN F W, et al.A comprehensive survey on graph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1):4-24. [29] BA J L, KIROS J R, HINTON G E.Layer normalization[EB/OL].[2022-02-10].https://arxiv.org/abs/1607.06450. [30] ARJOVSKY M, CHINTALA S, BOTTOU L.Wasserstein generative adversarial networks[C]//Proceedings of International Conference on Machine Learning.New York, USA:ICML Press, 2017:214-223. [31] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York, USA:ACM Press:2017:5769-5779. [32] TOUTANOVA K, CHEN D Q.Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality.Stroudsburg, USA:Association for Computational Linguistics, 2015:57-66. [33] AN B, CHEN B, HAN X P, et al.Accurate text-enhanced knowledge graph representation learning[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1(Long Papers). Stroudsburg, USA:Association for Computational Linguistics, 2018:745-755. [34] SUN Z, DENG Z H, NIE J Y, et al.RotatE:knowledge graph embedding by relational rotation in complex space[C]//Proceedings of International Conference on Learning Representations.San Diego, USA:ICLR Press, 2019:1-18. [35] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of European Semantic Web Conference. Berlin, Germany:Springer, 2018:593-607. [36] BANSAL T, JUAN D C, RAVI S, et al.A2N:attending to neighbors for knowledge graph inference[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:4387-4392. [37] VASHISHTH S, SANYAL S, NITIN V, et al.Composition-based multi-relational graph convolutional networks[C]//Proceedings of International Conference on Learning Representations.San Diego, USA:ICLR Press, 2019:1-19. [38] KINGMA D P, BA J.Adam:a method for stochastic optimization[C]//Proceedings of International Conference on Learning Representations.San Diego, USA:ICLR Press, 2015:1-15. |