1 |
姚俊峰, 何瑞, 史童童, 等. 基于机器学习的交通流预测方法综述. 交通运输工程学报, 2023, 23 (3): 44- 67.
doi: 10.19818/j.cnki.1671-1637.2023.03.003
|
|
YAO J F , HE R , SHI T T , et al. Review on machine learning-based traffic flow prediction methods. Journal of Traffic and Transportation Engineering, 2023, 23 (3): 44- 67.
doi: 10.19818/j.cnki.1671-1637.2023.03.003
|
2 |
谭娟, 王胜春. 基于深度学习的交通拥堵预测模型研究. 计算机应用研究, 2015, 32 (10): 2951- 2954.
doi: 10.3969/j.issn.1001-3695.2015.10.016
|
|
TAN J , WANG S C . Research on prediction model for traffic congestion based on deep learning. Application Research of Computers, 2015, 32 (10): 2951- 2954.
doi: 10.3969/j.issn.1001-3695.2015.10.016
|
3 |
ALI A , ZHU Y M , ZAKARYA M . Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction. Neural Networks, 2022, 145, 233- 247.
doi: 10.1016/j.neunet.2021.10.021
|
4 |
LI D , LASENBY J . Spatiotemporal attention-based graph convolution network for segment-level traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (7): 8337- 8345.
doi: 10.1109/TITS.2021.3078187
|
5 |
GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2019: 922-929.
URL
|
6 |
SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2020: 914-921.
URL
|
7 |
SMITH B L , WILLIAMS B M , KEITH OSWALD R . Comparison of parametric and nonparametric models for traffic flow forecasting. Transportation Research Part C: Emerging Technologies, 2002, 10 (4): 303- 321.
doi: 10.1016/S0968-090X(02)00009-8
|
8 |
杨立宁, 李艳婷. 基于SVD和ARIMA的时空序列分解与预测. 计算机工程, 2021, 47 (3): 53- 61.
doi: 10.19678/j.issn.1000-3428.0056885
|
|
YANG L N , LI Y T . Spatio-temporal sequence decomposition and prediction based on SVD and ARIMA. Computer Engineering, 2021, 47 (3): 53- 61.
doi: 10.19678/j.issn.1000-3428.0056885
|
9 |
CHANDRA S R , AL-DEEK H . Predictions of freeway traffic speeds and volumes using vector autoregressive models. Journal of Intelligent Transportation Systems, 2009, 13 (2): 53- 72.
doi: 10.1080/15472450902858368
|
10 |
VLAHOGIANNI E I , KARLAFTIS M G , GOLIAS J C . Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume. Transportation Research Part C: Emerging Technologies, 2006, 14 (5): 351- 367.
doi: 10.1016/j.trc.2006.09.002
|
11 |
VAN LINT J W C , HOOGENDOORN S P , VAN ZUYLEN H J . Freeway travel time prediction with state-space neural networks: modeling state-space dynamics with recurrent neural networks. Transportation Research Record, 2002, 1811 (1): 30- 39.
doi: 10.3141/1811-04
|
12 |
ZHAO Z , CHEN W H , WU X M , et al. LSTM network: a deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems, 2017, 11 (2): 68- 75.
doi: 10.1049/iet-its.2016.0208
|
13 |
WU Q , JIANG Z , HONG K W , et al. Tensor-based recurrent neural network and multi-modal prediction with its applications in traffic network management. IEEE Transactions on Network and Service Management, 2021, 18 (1): 780- 792.
doi: 10.1109/TNSM.2021.3056912
|
14 |
MA X L , TAO Z M , WANG Y H , et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies, 2015, 54, 187- 197.
doi: 10.1016/j.trc.2015.03.014
|
15 |
SCHUSTER M , PALIWAL K K . Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 1997, 45 (11): 2673- 2681.
doi: 10.1109/78.650093
|
16 |
ASIF N A , SARKER Y , CHAKRABORTTY R K , et al. Graph neural network: a comprehensive review on non-euclidean space. IEEE Access, 2021, 9, 60588- 60606.
doi: 10.1109/ACCESS.2021.3071274
|
17 |
YAN H Y , MA X L , PU Z Y . Learning dynamic and hierarchical traffic spatiotemporal features with transformer. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (11): 22386- 22399.
doi: 10.1109/TITS.2021.3102983
|
18 |
马愈昭, 张岩峰, 冯帅. 基于神经网络的侧向激光雷达信号去噪算法. 光电工程, 2023, 50 (6): 220341.
URL
|
|
MA Y Z , ZHANG Y F , FENG S . A denoising algorithm based on neural network for side-scatter lidar signal. Opto-Electronic Engineering, 2023, 50 (6): 220341.
URL
|
19 |
CUI Z Y , HENRICKSON K , KE R M , et al. Traffic graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (11): 4883- 4894.
doi: 10.1109/TITS.2019.2950416
|
20 |
GUO S N , LIN Y F , LI S J , et al. Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (10): 3913- 3926.
doi: 10.1109/TITS.2019.2906365
|
21 |
LI P , CHEN Z K , YANG L T , et al. An improved stacked auto-encoder for network traffic flow classification. IEEE Network, 2018, 32 (6): 22- 27.
doi: 10.1109/MNET.2018.1800078
|
22 |
TIAN Y, WEI C C, XU D W. Traffic flow prediction based on stack AutoEncoder and long short-term memory network[C]//Proceedings of the IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). Washington D. C., USA: IEEE Press, 2020: 385-388.
URL
|
23 |
WANG X Y, MA Y, WANG Y Q, et al. Traffic flow prediction via spatial temporal graph neural network[C]//Proceedings of the Web Conference 2020. New York, USA: ACM Press, 2020: 1082-1092.
URL
|
24 |
LI M Z, ZHU Z X. Spatial-temporal fusion graph neural networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2021: 4189-4196.
URL
|
25 |
ZHENG C P, FAN X L, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2020: 1234-1241.
URL
|
26 |
LV Y S , DUAN Y J , KANG W W , et al. Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 2015, 16 (2): 865- 873.
doi: 10.1109/TITS.2014.2345663
|
27 |
YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2018: 3634-3640.
|
28 |
ZHAO Y P, XU Y P, HE X T, et al. Spatiotemporal graph attention networks for urban traffic flow prediction[C]//Proceedings of the IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Washington D. C., USA: IEEE Press, 2022: 3634-3640.
URL
|