| 1 | LIN Z H, TIAN C X, HOU Y P, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]//Proceedings of the 2022 ACM Web Conference. New York, USA: ACM Press, 2022: 2320-2329. | 
																													
																						| 2 |  YU W ,  LI S J .  Recommender systems based on multiple social networks correlation. Future Generation Computer Systems, 2018, 87, 312- 327.  doi: 10.1016/j.future.2018.04.079
 | 
																													
																						| 3 | SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. New York, USA: ACM Press, 2001: 285-295. | 
																													
																						| 4 | WILHELM F. Matrix factorization for collaborative filtering is just solving an adjoint latent Dirichlet allocation model after all[C]//Proceedings of the 15th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2021: 55-62. | 
																													
																						| 5 |  ZHANG Z Y ,  LIU Y ,  ZHANG Z J , et al.  Fused matrix factorization with multi-tag, social and geographical influences for POI recommendation. World Wide Web, 2019, 22 (3): 1135- 1150.  doi: 10.1007/s11280-018-0579-9
 | 
																													
																						| 6 |  SHANI G ,  HECKERMAN D ,  BRAFMAN R I .  An MDP-based recommender system. Journal of Machine Learning Research, 2005, 6, 1265- 1295. | 
																													
																						| 7 | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[C]//Proceedings of the 4th International Conference on Learning Representations. Berlin, Germany: Springer, 2016: 487-498. | 
																													
																						| 8 | HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee, 2017: 173-182. | 
																													
																						| 9 | 吴志强, 解庆, 李琳, 等.  基于多模态融合的图神经网络推荐算法. 计算机工程, 2024, 50 (1): 91- 100.  URL
 | 
																													
																						|  |  WU Z Q ,  XIE Q ,  LI L , et al.  Graph neural network recommendation algorithm based on multimodal fusion. Computer Engineering, 2024, 50 (1): 91- 100.  URL
 | 
																													
																						| 10 | 陈昱瑾, 王晶, 武志昊, 等.  基于图卷积网络融合群组关系的社会化推荐方法. 计算机工程, 2023, 49 (5): 112- 121.  URL
 | 
																													
																						|  |  CHEN Y J ,  WANG J ,  WU Z H , et al.  Social recommendation method integrating group relationships based on graph convolution network. Computer Engineering, 2023, 49 (5): 112- 121.  URL
 | 
																													
																						| 11 | TAN Y K, XU X, LIU Y. Improved recurrent neural networks for session-based recommendations[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York, USA: ACM Press, 2016: 17-22. | 
																													
																						| 12 | LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York, USA: ACM Press, 2017: 1419-1428. | 
																													
																						| 13 | LIU Q, ZENG Y, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2018: 1831-1839. | 
																													
																						| 14 |  WU S ,  TANG Y ,  ZHU Y , et al.  Session-based recommendation with graph neural networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 346- 353.  doi: 10.1609/aaai.v33i01.3301346
 | 
																													
																						| 15 | 黄震华, 林小龙, 孙圣力, 等.  会话场景下基于特征增强的图神经推荐方法. 计算机学报, 2022, 45 (4): 766- 780. | 
																													
																						|  |  HUANG Z H ,  LIN X L ,  SUN S L , et al.  Feature augmentation based graph neural recommendation method in session scenarios. Chinese Journal of Computers, 2022, 45 (4): 766- 780. | 
																													
																						| 16 | 陈聪, 张伟, 王骏.  带有时间预测辅助任务的会话式序列推荐. 计算机学报, 2021, 44 (9): 1841- 1853. | 
																													
																						|  |  CHEN C ,  ZHANG W ,  WANG J .  Session-based sequential recommendation with auxiliary time prediction. Chinese Journal of Computers, 2021, 44 (9): 1841- 1853. | 
																													
																						| 17 | WESTON J, CHOPRA S, BORDES A. Memory networks[C]//Proceedings of the 3rd International Conference on Learning Representations. [S. l. ]: ICLR, 2015: 1-10. | 
																													
																						| 18 |  MALEKMOHAMADI F S ,  SAFI E F ,  KARIMIAN K M .  A review on Neural Turing Machine(NTM). SN Computer Science, 2020, 1 (6): 333. | 
																													
																						| 19 | SUKHBAATAR S, WESTON J, FERGUS R. End-to-end memory networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2015: 2440-2448. | 
																													
																						| 20 | CHEN X, XU H T, ZHANG Y F, et al. Sequential recommendation with user memory networks[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2018: 108-116. | 
																													
																						| 21 | HUANG J, ZHAO W X, DOU H J, et al. Improving sequential recommendation with knowledge-enhanced memory networks[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York, USA: ACM Press, 2018: 505-514. | 
																													
																						| 22 |  CAI Z P ,  HE Z B ,  GUAN X , et al.  Collective data-sanitization for preventing sensitive information inference attacks in social networks. IEEE Transactions on Dependable and Secure Computing, 2016, 15 (4): 577- 590. | 
																													
																						| 23 | 曾亚竹, 孙静宇, 何倩倩.  融合BiGRU和记忆网络的会话推荐算法. 计算机工程与设计, 2023, 44 (2): 335- 342. | 
																													
																						|  |  ZENG Y Z ,  SUN J Y ,  HE Q Q .  Session-based recommendation algorithm combined with BiGRU and memory network. Computer Engineering and Design, 2023, 44 (2): 335- 342. | 
																													
																						| 24 | SONG B, CAO Y, ZHANG W F, et al. Session-based recommendation with hierarchical memory networks[C]//Proceedings of the Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 2181-2184. | 
																													
																						| 25 |  WEN Y ,  KANG S T ,  ZENG Q T , et al.  Session-based recommendation with GNN and time-aware memory network. Mobile Information Systems, 2022, (6): 1879367. | 
																													
																						| 26 |  | 
																													
																						| 27 | RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York, USA: ACM Press, 2010: 811-820. |