[1] ROH Y, HEO G, WHANG S E. A survey on data collection for machine learning:a big data-AI integration perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(4):1328-1347. [2] ZHANG C L, LI S Y, XIA J Z, et al. BatchCrypt:efficient homomorphic encryption for cross-silo federated learning[C]//Proceedings of 2020 USENIX Conference on USENIX Annual Technical Conference. New York, USA:ACM Press, 2020:493-506. [3] YUE Z, LI M, LAI L Z, et al. Federated learning with non-IID data[EB/OL].[2023-05-11]. https://arxiv.org/abs/1806.00582. [4] YANG Q, LIU Y, CHEN T J, et al. Federated machine learning:concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2):12. [5] PILLUTLA K, MALIK K, MOHAMED A, et al. Federated learning with partial model personalization[EB/OL].[2023-05-11]. https://arxiv.org/abs/2204.03809. [6] ALAZAB M, RM S P, PARIMALA M, et al. Federated learning for cybersecurity:concepts, challenges, and future directions[J]. IEEE Transactions on Industrial Informatics, 2022, 18(5):3501-3509. [7] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016. ZHOU Z H. Machine learning[M]. Beijing:Tsinghua University Press, 2016.(in Chinese) [8] VERBRAEKEN J, WOLTING M, KATZY J, et al. A survey on distributed machine learning[J]. ACM Computing Surveys, 53(2):30. [9] CUSTERS B, SEARS A M, DECHESNE F, et al. EU personal data protection in policy and practice[M].[S.l.]:T.M.C. Asser Press, 2019. [10] 中华人民共和国网络安全法[EB/OL].[2023-05-11]. http://www.cac.gov.cn/2016-11/07/c_1119867116_2.htm. Cyber security law of the People's Republic of China[EB/OL].[2023-05-11]. http://www.cac.gov.cn/2016-11/07/c_1119867116_2.htm. (in Chinese) [11] 中华人民共和国数据安全法[EB/OL].[2023-05-11]. http://www.cac.gov.cn/2021-06/11/c_1624994566919140.htm. Data security law of the People's Republic of China[EB/OL].[2023-05-11]. http://www.cac.gov.cn/2021-06/11/c_1624994566919140.htm. (in Chinese) [12] 中华人民共和国个人信息保护法[EB/OL].[2023-05-11]. http://www.cac.gov.cn/2021-08/20/c_1631050028355286.htm. Personal information protection law of the People's Republic of China[EB/OL].[2023-05-11]. http://www.cac.gov.cn/2021-08/20/c_1631050028355286.htm. (in Chinese) [13] WANG X D, GARG S, LIN H, et al. Toward accurate anomaly detection in industrial Internet of Things using hierarchical federated learning[J]. IEEE Internet of Things Journal, 2022, 9(10):7110-7119. [14] ANDREW H, RAO K, MATHEWS R, et al. Federated learning for mobile keyboard prediction[EB/OL].[2023-05-11]. https://arxiv.org/abs/1811.03604. [15] 王健宗,李泽远,何安珣. 深入浅出联邦学习原理与实践[M]. 北京:机械工业出版社,2021. WANG J Z, LI Z Y, HE A X. Principles and practice of federated learning in a simple way[M]. Beijing:Mechanical Industry Press, 2021. (in Chinese) [16] DING J, TRAMEL E, SAHU A K, et al. Federated learning challenges and opportunities:an outlook[C]//Proceedings of 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C., USA:IEEE Press, 2022:8752-8756. [17] 杨强, 刘洋, 程勇, 等. 联邦学习[M]. 北京:电子工业出版社, 2020. YANG Q, LIU Y, CHENG Y, et al. Federated learning[M]. Beijing:Publishing House of Electronics Industry, 2020.(in Chinese) [18] MCMAHAN H B, MOORE E, RAMAGE D, et al. Federated learning of deep networks using model averaging[EB/OL].[2023-05-11]. https://arxiv.org/abs/1602.05629v1. [19] MCMAHAN B, RANAGE D. Federated learning:collaborative machine learning without centralized training data[EB/OL].[2023-05-11]. https://www.googblogs.com/federated-learning-collaborative-machine-learning-without-centralized-training-data/. [20] 彭南博, 王虎. 联邦学习技术及实战[M]. 北京:电子工业出版社, 2021. PENG N B, WANG H. Federal learning technology and actual combat[M]. Beijing:Publishing House of Electronics Industry, 2021.(in Chinese) [21] BONAWITZ K, EICHNER H, GRIESKAMP W, et al. Towards federated learning at scale:system design[EB/OL].[2023-05-11]. https://arxiv.org/abs/1902.01046. [22] 2022联邦学习全球研究与应用趋势报告[EB/OL].[2023-05-11]. https://www.secrss.com/articles/34579. 2022 Global research and application trend report on federated learning[EB/OL].[2023-05-11]. https://www.secrss.com/articles/34579. (in Chinese) [23] KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and open problems in federated learning[EB/OL].[2023-05-11]. https://arxiv.org/abs/1912.04977. [24] 邢云隆. 基于网络安全维护的计算机网络安全技术应用探讨[J]. 科技创新与应用, 2022(25):189-192. XING Y L. Discussion on the application of computer network security technology based on network security maintenance[J]. Technology Innovation and Application, 2022(25):189-192.(in Chinese) [25] IMTEAJ A, THAKKER U, WANG S Q, et al. A survey on federated learning for resource-constrained IoT devices[J]. IEEE Internet of Things Journal, 2022, 9(1):1-24. [26] 梁天恺, 曾碧, 陈光. 联邦学习综述:概念、技术、应用与挑战[J]. 计算机应用, 2022, 42(12):3651-3662. LIANG T K, ZENG B, CHEN G. Federated learning survey:concepts, technologies, applications and challenges[J]. Journal of Computer Applications, 2022, 42(12):3651-3662.(in Chinese) [27] 王腾, 霍峥, 黄亚鑫, 等. 联邦学习中的隐私保护技术研究综述[J]. 计算机应用, 2023, 43(2):437-449. WANG T, HUO Z, HUANG Y X, et al. Survey of privacy-preserving technologies in federated learning[J]. Journal of Computer Applications, 2023, 43(2):437-449.(in Chinese) [28] 吴建汉, 司世景, 王健宗, 等. 联邦学习攻击与防御综述[J]. 大数据, 2022, 8(5):12-32. WU J H, SI S J, WANG J Z, et al. Threats and defenses of federated learning:a survey[J]. Big Data Research, 2022, 8(5):12-32.(in Chinese) [29] CHEN Q, YAO L, WANG X, et al. SecMDGM:federated learning security mechanism based on multi-dimensional auctions[J]. Sensors, 2022, 22(23):9434. [30] 王坤庆, 刘婧, 李晨, 等. 联邦学习安全威胁综述[J]. 信息安全研究, 2022, 8(3):223-234. WANG K Q, LIU J, LI C, et al. A survey on threats to federated learning[J]. Journal of Information Security Research, 2022, 8(3):223-234.(in Chinese) [31] 陈明鑫, 张钧波, 李天瑞. 联邦学习攻防研究综述[J]. 计算机科学, 2022, 49(7):310-323. CHEN M X, ZHANG J B, LI T R. Survey on attacks and defenses in federated learning[J]. Computer Science, 2022, 49(7):310-323.(in Chinese) [32] MOTHUKURI V, PARIZI R M, POURIYEH S, et al. A survey on security and privacy of federated learning[J]. Future Generation Computer Systems, 2021, 115:619-640. [33] NGUYEN T, THAI M T. Preserving privacy and security in federated learning[J]. IEEE/ACM Transactions on Networking, 2024,32(1):833-843. [34] 景慧昀, 周川, 贺欣. 针对人脸检测对抗攻击风险的安全测评方法[J]. 计算机科学, 2021, 48(7):17-24. JING H Y, ZHOU C, HE X. Security evaluation method for risk of adversarial attack on face detection[J]. Computer Science, 2021, 48(7):17-24.(in Chinese) [35] CAO J R, ZHU L H. A highly efficient, confidential, and continuous federated learning backdoor attack strategy[C]//Proceedings of the 14th International Conference on Machine Learning and Computing. New York, USA:ACM Press, 2022:18-27. [36] LI M H, WAN W, LU J R, et al. Shielding federated learning:mitigating Byzantine attacks with less constraints[EB/OL].[2023-05-11]. https://arxiv.org/abs/2210.01437. [37] 孙爽, 李晓会, 刘妍, 等. 不同场景的联邦学习安全与隐私保护研究综述[J]. 计算机应用研究, 2021, 38(12):3527-3534. SUN S, LI X H, LIU Y, et al. Survey on security and privacy protection in different scenarios of federated learning[J]. Application Research of Computers, 2021, 38(12):3527-3534.(in Chinese) [38] JIANG Y F, ZHANG W W, CHEN Y X. Data quality detection mechanism against label flipping attacks in federated learning[J]. IEEE Transactions on Information Forensics and Security, 2023, 18:1625-1637. [39] CHIU T C, LIN W C, PANG A C, et al. Dual-masking framework against two-sided model attacks in federated learning[EB/OL].[2023-05-11]. https://www.semanticscholar.org/paper/Dual-Masking-Framework-against-Two-Sided-Model-in-Chiu-Lin/ff9f85f3d51496f74f6ce2b5e50110d49e254217/figure/6. [40] CHEN L Y, CHIU T C, PANG A C, et al. FedEqual:defending model poisoning attacks in heterogeneous federated learning[C]//Proceedings of the IEEE Global Communications Conference. Washington D.C., USA:IEEE Press, 2021:1-6. [41] WANG Y K, ZHAI D H, HE Y P, et al. An adaptive robust defending algorithm against backdoor attacks in federated learning[J]. Future Generation Computer Systems, 2023, 143(C):118-131. [42] ZHAO C, WEN Y, LI S L, et al. FederatedReverse:a detection and defense method against backdoor attacks in federated learning[C]//Proceedings of 2021 ACM Workshop on Information Hiding and Multimedia Security. New York, USA:ACM Press, 2021:1-6. [43] YANG X, FENG Y, FANG W J, et al. An accuracy-lossless perturbation method for defending privacy attacks in federated learning[C]//Proceedings of ACM Web Conference 2022. New York, USA:ACM Press, 2022:732-742. [44] 张鹏. 基于区块链的联邦学习隐私安全性研究[D]. 长春:长春工业大学, 2022. ZHANG P. Research on privacy security of federated learning based on blockchain[D]. Changchun:Changchun University of Technology, 2022. (in Chinese) [45] 钱文君, 沈晴霓, 吴鹏飞, 等. 大数据计算环境下的隐私保护技术研究进展[J]. 计算机学报, 2022, 45(4):669-701. QIAN W J, SHEN Q N, WU P F, et al. Research progress on privacy-preserving techniques in big data computing environment[J]. Chinese Journal of Computers, 2022, 45(4):669-701.(in Chinese) [46] 中国信通院.隐私计算白皮书(2021年)[EB/OL].[2023-05-11]. https://www.sohu.com/a/478870037_121124365. China Academy of Information and Communications. White paper on privacy computing (2021)[EB/OL].[2023-05-11]. https://www.sohu.com/a/478870037_121124365. (in Chinese) [47] YAO C C. How to generate and exchange secrets[C]//Proceedings of the 27th Annual Symposium on Foundations of Computer Science. New York, USA:ACM Press, 1986:162-167. [48] 冯琦. 基于安全多方计算的数据隐私保护技术研究[D]. 武汉:武汉大学, 2021. FENG Q. Research on data privacy preservation technologies using secure multi-party computation[D].Wuhan:Wuhan University, 2021. (in Chinese) [49] 孙茂华. 安全多方计算及其应用研究[D]. 北京:北京邮电大学, 2013. SUN M H. Research on secure multi-party computation and its application[D]. Beijing:Beijing University of Posts and Telecommunications, 2013. (in Chinese) [50] ZHANG C, EKANUT S, ZHEN L L, et al. Augmented multi-party computation against gradient leakage in federated learning[J/OL]. IEEE Transactions on Big Data:1-10[2023-05-11]. https://doi.org/10.1109/TBDATA.2022.3208736. [51] HOSSEINI S M, SIKAROUDI M, BABAEI M, et al. Cluster based secure multi-party computation in federated learning for histopathology images[M].Berlin, Germany:Springer, 2022. [52] KANAGAVELU R, WEI Q S, LI Z X, et al. CE-Fed:communication efficient multi-party computation enabled federated learning[J]. Array, 2022, 15:100207. [53] SUN L T, DU R M, HE D J, et al. Feature engineering framework based on secure multi-party computation in federated learning[C]//Proceedings of the 23rd International Conference on High Performance Computing & Communications; 7th International Conference on Data Science & Systems; 19th International Conference on Smart City; 7th International Conference on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). Washington D.C., USA:IEEE Press, 2021:487-494. [54] RIVEST, R L, MICHAWL L D. On data banks and privacy homomorphisms[EB/OL].[2023-05-11]. https://www.semanticscholar.org/paper/ON-DATA-BANKS-AND-PRIVAC Y-HOMOMORPHISMS-Rivest-Dertouzos/c365f01d330b221 1e74069120e88cff37eacbcf5. [55] 周启贤. 基于同态加密的安全的机器学习研究[D]. 成都:电子科技大学, 2021. ZHOU Q X. Research on secure machine learning based on homomorphic encryption[D]. Chengdu:University of Electronic Science and Technology of China, 2021. (in Chinese) [56] TIAN H B, WEN Y C, ZHANG F G, et al. A distributed threshold additive homomorphic encryption for federated learning with dropout resiliency based on lattice[C]//Proceedings of International Symposium on Cyberspace Safety and Security. Berlin, Germany:Springer, 2022:277-292. [57] WIBAWA F, CATAK F O, KUZLU M, et al. Homomorphic encryption and federated learning based privacy-preserving CNN training:COVID-19 detection use-case[C]//Proceedings of European Interdisciplinary Cybersecurity Conference. New York, USA:ACM Press, 2022:2864-2880. [58] PARK J, YU N Y, LIM H. Privacy-preserving federated learning using homomorphic encryption with different encryption keys[C]//Proceedings of the 13th International Conference on Information and Communication Technology Convergence (ICTC). Washington D.C., USA:IEEE Press, 2022:1869-1871. [59] QIU F Y, YANG H, ZHOU L, et al. Privacy preserving federated learning using CKKS homomorphic encryption[M]. Berlin, Germany:Springer, 2022. [60] ZHANG S L, LI Z R, CHEN Q, et al. Dubhe:towards data unbiasedness with homomorphic encryption in federated learning client selection[C]//Proceedings of the 50th International Conference on Parallel Processing. New York, USA:ACM Press, 2021:1-10. [61] DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis[C]//Proceedings of the 3rd Conference on Theory of Cryptography. New York, USA:ACM Press, 2006:265-284. [62] 张鸿鸣, 鲍晓涵, 倪巍伟. 基于差分隐私的数据流频繁项集发布[J]. 计算机工程与设计, 2022, 43(11):3051-3056. ZHANG H M, BAO X H, NI W W. Dataflow frequent item set publishing based on differential privacy[J]. Computer Engineering and Design, 2022, 43(11):3051-3056.(in Chinese) [63] 张珊. 深度学习中差分隐私保护算法研究[D]. 呼和浩特:内蒙古大学, 2022. ZHANG S. Research on differential privacy in deep learning[D].Hohhot:Inner Mongolia University, 2022. (in Chinese) [64] 李明霜. 基于分类数据的差分隐私保护研究[D]. 西安:陕西师范大学, 2021. LI M S. Research on differential privacy protection based on classified data[D].Xi'an:Shaanxi Normal University, 2021. (in Chinese) [65] 杨庚, 王周生. 联邦学习中的隐私保护研究进展[J]. 南京邮电大学学报(自然科学版), 2020, 40(5):204-214. YANG G, WANG Z S. Survey on privacy preservation in federated learning[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2020, 40(5):204-214.(in Chinese) [66] AVENT B, KOROLOVA A, ZEBER D, et al. BLENDER:enabling local search with a hybrid differential privacy model[EB/OL].[2023-05-11]. https://arxiv.org/abs/1705.00831. [67] WANG C, WU X K, LIU G Y, et al. Safeguarding cross-silo federated learning with local differential privacy[J]. Digital Communications and Networks, 2022, 8(4):446-454. [68] CHAMIKARA M A P, LIU D X, CAMTEPE S, et al. Local differential privacy for federated learning[M]. Berlin, Germany:Springer International Publishing, 2022. [69] ZONG H X, WANG Q, LIU X F, et al. Communication reducing quantization for federated learning with local differential privacy mechanism[C]//Proceedings of IEEE/CIC International Conference on Communications in China (ICCC). Washington D.C., USA:IEEE Press, 2021:75-80. [70] BYRD D, MUGUNTHAN V, POLYCHRONIADOU A, et al. Collusion resistant federated learning with oblivious distributed differential privacy[C]//Proceedings of the 3rd ACM International Conference on AI in Finance. New York, USA:ACM Press, 2022:114-122. [71] JIANG Z F, WANG W, CHEN R C, et al. Taming client dropout for distributed differential privacy in federated learning[EB/OL].[2023-05-11]. https://arxiv.org/pdf/2209.12528v1.pdf. [72] LIU W Y, CHENG J H, WANG X L, et al. Hybrid differential privacy based federated learning for Internet of Things[J]. Journal of Systems Architecture, 2022, 124:102418. [73] 姜建林. 基于可信执行环境的联邦学习模型安全聚合技术研究[D]. 武汉:武汉大学, 2021. JIANG J L. Research on secure aggregation technology of federated learning based on trusted execution environment[D].Wuhan:Wuhan University, 2021. (in Chinese) [74] 宁振宇, 张锋巍, 施巍松. 基于边缘计算的可信执行环境研究[J]. 计算机研究与发展, 2019, 56(7):1441-1453. NING Z Y, ZHANG F W, SHI W S. A study of using TEE on edge computing[J]. Journal of Computer Research and Development, 2019, 56(7):1441-1453.(in Chinese) [75] ZHANG Y H, WANG Z W, CAO J F, et al. ShuffleFL:gradient-preserving federated learning using trusted execution environment[C]//Proceedings of the 18th ACM International Conference on Computing Frontiers. New York, USA:ACM Press, 2021:161-168. [76] XU T X, ZHU K L, ANDRZEJAK A, et al. Distributed learning in trusted execution environment:a case study of federated learning in SGX[C]//Proceedings of the 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC). Washington D.C., USA:IEEE Press, 2021:450-454. [77] MO F, HADDADI H, KATEVAS K, et al. PPFL:privacy-preserving federated learning with trusted execution environments[EB/OL].[2023-05-11]. https://arxiv.org/abs/2104.14380. [78] CHEN Y, LUO F, LI T, et al. A training-integrity privacy-preserving federated learning scheme with trusted execution environment[J]. Information Sciences, 2020, 522:69-79. [79] JIA B, ZHANG X S, LIU J W, et al. Blockchain-enabled federated learning data protection aggregation scheme with differential privacy and homomorphic encryption in IIoT[J]. IEEE Transactions on Industrial Informatics, 2022, 18(6):4049-4058. [80] KATO F, CAO Y, YOSHIKAWA M, et al. OLIVE:oblivious and differentially private federated learning on trusted execution environment[EB/OL].[2023-05-11]. https://arxiv.org/pdf/2202.07165v1.pdf. [81] YAO J J, ANSARI N. Enhancing federated learning in fog-aided IoT by CPU frequency and wireless power control[J]. IEEE Internet of Things Journal, 2021, 8(5):3438-3445. [82] KONECNY J, BRENDAN MCMAHAN H, YU F X, et al. Federated learning:strategies for improving communication efficiency[EB/OL].[2023-05-11]. https://arxiv.org/abs/1610.05492. [83] LI X, HUANG K X, YANG W H, et al. On the convergence of FedAvg on Non-IID data[EB/OL].[2023-05-11]. https://arxiv.org/abs/1907.02189. [84] MOHRI M, SIVEK G, SURESH A, et al. Agnostic federated learning[EB/OL].[2023-05-11]. https://arxiv.org/abs/1902.00146. [85] LI T, SAHU A K, TALWALKAR A, et al. Federated learning:challenges, methods, and future directions[J]. IEEE Signal Processing Magazine, 2020, 37(3):50-60. [86] 赵杨, 张海岩, 王硕. 联邦学习综述[J]. 电脑编程技巧与维护, 2022(1):117-119. ZHAO Y, ZHANG H Y, WANG S. A summary of federal learning[J]. Computer Programming Skills & Maintenance, 2022(1):117-119.(in Chinese) [87] 周传鑫, 孙奕, 汪德刚, 等. 联邦学习研究综述[J]. 网络与信息安全学报, 2021, 7(5):77-92. ZHOU C X, SUN Y, WANG D G, et al. Survey of federated learning research[J]. Chinese Journal of Network and Information Security, 2021, 7(5):77-92.(in Chinese) |