1 |
|
2 |
|
3 |
|
4 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
5 |
YOUNG T , HAZARIKA D , PORIA S , et al. Recent trends in deep learning based natural language processing. IEEE Computational Intelligence Magazine, 2018, 13 (3): 55- 75.
doi: 10.1109/MCI.2018.2840738
|
6 |
GOHR A. Improving attacks on round-reduced SPECK32/64 using deep learning[C]//Proceedings of the 39th Annual International Cryptology Conference. Berlin, Germany: Springer, 2019: 150-179.
|
7 |
BEAULIEU R, SHORS D, SMITH J, et al. The SIMON and SPECK lightweight block ciphers[C]//Proceedings of the 52nd Annual Design Automation Conference. New York, USA: ACM Press, 2015: 1-6.
|
8 |
BENAMIRA A, GERAULT D, PEYRIN T, et al. A deeper look at machine learning-based cryptanalysis[C]//Proceedings of Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin, Germany: Springer, 2021: 805-835.
|
9 |
宿恒川, 朱宣勇, 段明. 基于PU分类的差分区分器及其应用. 密码学报, 2021, 8 (2): 330- 337.
|
|
SU H C , ZHU X Y , DUAN M . Differential distinguisher based on PU learning and its application. Journal of Cryptologic Research, 2021, 8 (2): 330- 337.
|
10 |
|
11 |
SU H C, ZHU X Y, MING D. Polytopic attack on round-reduced Simon32/64 using deep learning[M]//WU Y D, YUNG M. Lecture Notes in Computer Science. Berlin, Germany: Springer, 2021: 3-20.
|
12 |
付超辉, 段明, 魏强, 等. 基于深度学习的多面体差分攻击及其应用. 密码学报, 2020, 8 (4): 591- 600.
|
|
FU C H , DUAN M , WEI Q , et al. Polytopic differential attack based on deep learning and its application. Journal of Cryptologic Research, 2020, 8 (4): 591- 600.
|
13 |
YANG G Q, ZHU B, SUDER V, et al. The Simeck family of lightweight block ciphers[C]//Proceedings of Conference on Cryptographic Hardware and Embedded Systems. Berlin, Germany: Springer, 2015: 307-329.
|
14 |
SO J , KHOKHAR U M . Deep learning-based cryptanalysis of lightweight block ciphers. Security and Communication Networks, 2020, 32, 3701067.
|
15 |
YADAV T, KUMAR M. Differential-ML distinguisher: machine learning based generic extension for differential cryptanalysis[C]//Proceedings of International Conference on Cryptology and Information Security in Latin America. Berlin, Germany: Springer, 2021: 191-212.
|
16 |
BAO Z, GUO J, LIU M, et al. Enhancing differential-neural cryptanalysis[C]//Proceedings of International Conference on the Theory and Application of Cryptology and Information Security. Berlin, Germany: Springer, 2020: 561-570.
|
17 |
BAKSI A. Machine learning-assisted differential distinguishers for Lightweight ciphers[M]//Computer Architecture and Design Methodologies. Berlin, Germany: Springer, 2022: 141-162.
|
18 |
JAIN A, KOHLI V, MISHRA G. Machine Learning Assisted Differential Distinguishers for Lightweight Ciphers[M]//Classical and Physical Security of Symmetric Key Cryptographic Algorithms. Berlin, Germany: Springer, 2022: 141-162.
|
19 |
杨小雪, 陈杰, 韩立东. 深度学习在ARX分组密码差分分析的应用. 密码学报, 2022, 9 (5): 923- 935.
|
|
YANG X X , CHEN J , HAN L D . Application of deep learning in differential cryptanalysis of ARX block ciphers. Journal of Cryptologic Research, 2022, 9 (5): 923- 935.
|
20 |
陈怡, 包珍珍, 申焱天, 等. 用于大状态分组密码的深度学习辅助密钥恢复框架. 中国科学: 信息科学, 2023, 53 (7): 1348- 1367.
|
|
CHEN Y , BAO Z Z , SHEN Y T , et al. A deep learning-aided key recovery framework for large-state block ciphers. Scientia Sinica(Informationis), 2023, 53 (7): 1348- 1367.
|
21 |
VASWANI A, SHAZEER N M, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
22 |
YU H S , YANG Z G , TAN L , et al. Methods and datasets on semantic segmentation: a review. Neurocomputing, 2018, 304, 82- 103.
doi: 10.1016/j.neucom.2018.03.037
|
23 |
孙晓丽, 郭艳, 李宁, 等. 基于seq2seq模型的深度学习密码破译方法. 通信技术, 2019, 52 (9): 2217- 2222.
doi: 10.3969/j.issn.1002-0802.2019.09.026
|
|
SUN X L , GUO Y , LI N , et al. Deep learning password deciphering method based on seq2seq model. Communications Technology, 2019, 52 (9): 2217- 2222.
doi: 10.3969/j.issn.1002-0802.2019.09.026
|
24 |
AUER P. Using upper confidence bounds for online learning[C]//Proceedings of the 41st Annual Symposium on Foundations of Computer Science. Washington D. C., USA: IEEE Press, 2000: 56-64.
|
25 |
HOU Z Z , REN J J , CHEN S Z . Improve neural distinguishers of SIMON and SPECK. Security and Communication Networks, 2021, (404): 1- 1178.
|