作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (11): 304-316. doi: 10.19678/j.issn.1000-3428.0069486

• 图形图像处理 • 上一篇    下一篇

融合注意力机制的师生网络无监督行人重识别

陈玉敏1,2, 车进1,2,*(), 吴金蔓1,2   

  1. 1. 宁夏大学电子与电气工程学院, 宁夏 银川 750021
    2. 宁夏大学宁夏沙漠信息智能感知重点实验室, 宁夏 银川 750021
  • 收稿日期:2024-03-05 修回日期:2024-05-22 出版日期:2025-11-15 发布日期:2024-08-06
  • 通讯作者: 车进
  • 基金资助:
    国家自然科学基金(62366042)

Unsupervised Person Re-Identification for Teacher—Student Networks Incorporating Attention Mechanism

CHEN Yumin1,2, CHE Jin1,2,*(), WU Jinman1,2   

  1. 1. School of Electronic and Electrical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
    2. Ningxia Key Laboratory of Intelligent Sensing for Desert Information, Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2024-03-05 Revised:2024-05-22 Online:2025-11-15 Published:2024-08-06
  • Contact: CHE Jin

摘要:

无监督域自适应(UDA)行人重识别(Re-ID)技术致力于将已标记的源域知识转移到未标记的目标域, 但由于伪标签噪声和域间隙等问题的存在, 使得Re-ID十分具有挑战性。对此, 提出一种融合注意力机制的异构师生网络(HTSA)。该网络通过师生模型有效降低伪标签噪声的影响, 结合注意力机制关注行人关键信息, 滤除无关的背景信息; 采用域特定批处理归一化(DSBN)减弱由域间隙带来的性能下降问题; 采用一种新的数据增强方法, 将输入图像沿宽度方向切割为相同大小的两部分, 然后对每一部分进行独立的随机处理, 提升模型的泛化性能。实验结果显示, 在DukeMTMC-reID→MSMT17上, HTSA的均值平均精度(mAP)和Rank-1分别达到40.3%和71.0%, 在Market-1501→MSMT17上mAP和Rank-1分别达到37.7%和67.7%, 验证了HTSA的有效性。

关键词: 行人重识别, 无监督域自适应, 伪标签噪声, 注意力机制, 师生网络

Abstract:

Unsupervised Domain Adaptation (UDA) person Re-Identification (Re-ID) aims to transfer labeled source domain knowledge to an unlabeled target domain, which is very challenging owing to existing problems such as pseudo-label noise and domain gaps. Therefore, a Heterogeneous Teacher—Student network with Attention mechanisms (HTSA) is proposed to effectively reduce the influence of pseudo-label noise and focus on the key information of pedestrians while filtering out irrelevant background information. This study adopts Domain-Specific Batch Normalization (DSBN) to attenuate the performance degradation caused by domain gaps. Additionally, a novel data augmentation method is adopted to independently process two equally sized parts of the input image after width splitting, thereby enhancing the generalization ability. The experimental results reveal that mean Average Precision (mAP) and Rank-1 on DukeMTMC-reID→MSMT17 reach 40.3% and 71.0%, respectively, whereas those on Market-1501→MSMT17 reach 37.7% and 67.7%, respectively. This result demonstrates the effectiveness of the proposed method.

Key words: person Re-Identification (Re-ID), Unsupervised Domain Adaptation (UDA), pseudo-label noise, attention mechanism, teacher—student network