| 1 |
申彩英, 朱思瑶, 黄兴驰. 双目视觉的智能汽车目标检测算法研究. 重庆理工大学学报(自然科学), 2023, 37 (21): 11- 19.
|
|
SHEN C Y , ZHU S Y , HUANG X C . Research on intelligent vehicle target detection algorithm based on binocular vision. Journal of Chongqing University of Technology (Natural Science), 2023, 37 (21): 11- 19.
|
| 2 |
陈卫彪, 贾小军, 朱响斌, 等. 基于DSM-YOLO v5的无人机航拍图像目标检测. 计算机工程与应用, 2023, 59 (18): 226- 233.
|
|
CHEN W B , JIA X J , ZHU X B , et al. Target detection for UAV lmage based on DSM-YOLOv5. Computer Engineering and Applications, 2023, 59 (18): 226- 233.
|
| 3 |
BIE M L , LIU Y Y , LI G N , et al. Real-time vehicle detection algorithm based on a lightweight you-only-look-once approach. Expert Systems with Applications, 2023, 213, 119108.
doi: 10.1016/j.eswa.2022.119108
|
| 4 |
LI W . Vehicle detection in foggy weather based on an enhanced YOLO method. Journal of Physics, 2022, 2284 (1): 012015.
|
| 5 |
韩俊, 袁小平, 王准, 等. 基于YOLOv5s的无人机密集小目标检测算法. 浙江大学学报(工学版), 2023, 57 (6): 1224- 1233.
|
|
HAN J , YUAN X P , WANG Z , et al. UAV dense small target detection algorithm based on YOLOv5s. Journal of Zhejiang University (Engineering Science), 2023, 57 (6): 1224- 1233.
|
| 6 |
王承梅, 杜豫川. 基于YOLO算法的复杂交通环境中车辆目标检测方法. 交通与运输, 2023, 39 (2): 20- 24.
|
|
WANG C M , DU Y C . Vehicle object detection method in complex traffic environment based on YOLO algorithm. Traffic and Transportation, 2023, 39 (2): 20- 24.
|
| 7 |
ZHANG Y , GUO Z Y , WU J Q , et al. Real-time vehicle detection based on improved YOLOv5. Sustainability, 2022, 14 (19): 12274.
doi: 10.3390/su141912274
|
| 8 |
ZHOU F B, ZHAO H L, NIE Z. Safety helmet detection based on YOLOv5[C]//Proceedings of IEEE International Conference on Power Electronics, Computer Applications. Washington D. C., USA: IEEE Press, 2021: 6-11.
|
| 9 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2117-2125.
|
| 10 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
| 11 |
OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2023: 1-5.
|
| 12 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 365-377.
|
| 13 |
|
| 14 |
SNYDER C, DO M. STREETS: a novel camera network dataset for traffic flow[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2021: 866-897.
|
| 15 |
DONG Z , WU Y W , PEI M T , et al. Vehicle type classification using a semisupervised convolutional neural network. IEEE Transactions on Intelligent Transportation Systems, 2021, 16 (4): 2247- 2256.
|
| 16 |
WEN L Y , DU D W , CAI Z W , et al. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. Computer Vision and Image Understanding, 2020, 193, 102907.
doi: 10.1016/j.cviu.2020.102907
|
| 17 |
ZHU P F, DU D W, WEN L Y, et al. VisDrone-VID2019: the vision meets drone object detection in video challenge results[C]// Proceedings of IEEE/CVF International Conference on Computer Vision Workshop. Washington D. C., USA: IEEE Press, 2019: 213-22.
|
| 18 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
| 19 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
| 20 |
MA J , LU A G , CHEN C , et al. YOLOv5-lotus an efficient object detection method for lotus seedpod in a natural environment. Computers and Electronics in Agriculture, 2023, 206, 107635.
doi: 10.1016/j.compag.2023.107635
|
| 21 |
|
| 22 |
ZHENG Z H, WANG P, LIU W, et al. Distance-loU loss: faster and better learning for bounding bot regression[C] //Proceedings of the 34th AAAl Conference on Artificial lntelligence. Palo Alto, USA: AAAl Press, 2020: 12993-13000.
|
| 23 |
ZHANG Y F , REN W Q , ZHANG Z , et al. Focal and efficient IoU loss for accurate bounding box regression. Neurocomputing, 2022, 506, 146- 157.
doi: 10.1016/j.neucom.2022.07.042
|
| 24 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
| 25 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
| 26 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 1-6.
|
| 27 |
LI C, LI L, JIANG H, et al. YOLOv6: a singlestage object detection framework for industrial applications[EB/OL]. [2023-11-20]. https://arxiv.org/abs/2209.02976.
|