1 |
BERTASIUS G, PARK H S, YU S X, et al. Am I a baller? Basketball performance assessment from first-person videos[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2177-2185. 10.48550/arXiv.1611.05365
|
2 |
WADSWORTH N , CHARNOCK L , RUSSELL J , et al. Use of video-analysis feedback within a six-month coach education program at a professional football club. Journal of Sport Psychology in Action, 2020, 11 (2): 73- 91.
doi: 10.1080/21520704.2018.1528324
|
3 |
BAO H S , YAO X . RETRACTED: dynamic 3D image simulation of basketball movement based on embedded system and computer vision. Microprocessors and Microsystems, 2021, 81, 103655.
doi: 10.1016/j.micpro.2020.103655
|
4 |
王人成. 一种轮椅冰壶运动状态检测和目标跟踪系统: CN113033384A[P]. 2021-06-25.
|
|
WANG R C. A system for state detection and target tracking in wheelchair curling: CN113033384A[P]. 2021-06-25. (in Chinese)
|
5 |
LEE S , PARK S , KIM T , et al. Development of speed/trajectory measurement system using smart glasses for beginning or unskilled curlers. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2019, 233 (1): 145- 159.
doi: 10.1177/1754337118809864
|
6 |
KIM J, HWAJIN C. Curling stone tracking by an algorithm using appearance and colour features[C]//Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science. Washington D. C., USA: IEEE Press, 2015: 334.
|
7 |
|
|
LI W J. Ice curling sport detection and measurement based on intelligent vision[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese) 10.27061/d.cnki.ghgdu.2020.004616
|
8 |
|
|
WANG Z. Research on vision detection and tracking system of curling robot[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese) 10.27061/d.cnki.ghgdu.2021.003115
|
9 |
|
|
WU A G. Design and implementation of Hawk-Eye system for curling competitions[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese) 10.27061/d.cnki.ghgdu.2021.001175
|
10 |
SHI X K , WANG Q , WANG C , et al. An AI-based curling game system for winter Olympics. Research, 2022, 2022, 9805054.
doi: 10.34133/2022/9805054
|
11 |
XIAO Q , LI Z M , WANG X D , et al. Policy decision of curling in real competition scenes. Complex & Intelligent Systems, 2023, 9 (3): 3301- 3312.
URL
|
12 |
OTANI H, MASUI F, YANAGI H, et al. Advances in curling game information analysis by considering starting position[C]//Proceedings of the 5th International Congress on Sport Sciences Research and Technology Support. Funchal, Portugal: SciTePress, 2017: 1-10. 10.5220/0006498800890095
|
13 |
|
14 |
KAWAMURA T, KAMIMURA R, SUZUKI S, et al. A study on the curling robot will match with human result of one end game with one human[C]//Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG). Washington D. C., USA: IEEE Press, 2015: 489-495. 10.1109/CIG.2015.7317934
|
15 |
YAMAMOTO M, KATO S, IIZUKA H. Digital curling strategy based on game tree search[C]//Proceedings of the IEEE Conference on Computational Intelligence and Games. Washington D. C., USA: IEEE Press, 2015: 474-480. 10.1109/CIG.2015.7317931
|
16 |
SILVER D , HUANG A , MADDISON C J , et al. Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529, 484- 489.
doi: 10.1038/nature16961
|
17 |
YEE T, LIS'Y V, BOWLING M. Monte Carlo tree search in continuous action spaces with execution uncertainty[C]//Proceedings of the International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2016: 690-697.
|
18 |
LEE K, KIM S A, CHOI J, et al. Deep reinforcement learning in continuous action spaces: a case study in the game of simulated curling[C]//Proceedings of International Conference on Machine Learning. Berlin, Germany: Springer, 2018: 2937-2946.
|
19 |
HAN Y T , ZHOU Q B , DUAN F Q . A game strategy model in the digital curling system based on NFSP. Complex & Intelligent Systems, 2022, 8 (3): 1857- 1863.
URL
|
20 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of CVPR'18. Washington D. C., USA: IEEE Press, 2018: 8759-8768. 10.1109/CVPR.2018.00913
|
21 |
HONG M B , LI S W , YANG Y C , et al. SSPNet: scale selection pyramid network for tiny person detection from UAV images. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1- 5.
URL
|
22 |
XIE S, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of CVPR'17. Washington D. C., USA: IEEE Press, 2017: 1492-1500. 10.48550/arXiv.1611.05431
|
23 |
KOCSIS L, SZEPESVÁRI C. Bandit based Monte-Carlo planning[C]//Proceedings of the 17th European Conference on Machine Learning. Berlin, Germany: Springer, 2006: 282-293. 10.1007/11871842_29
|
24 |
|
25 |
SILVER D , SCHRITTWIESER J , SIMONYAN K , et al. Mastering the game of Go without human knowledge. Nature, 2017, 550, 354- 359.
doi: 10.1038/nature24270
|