1 |
候瑞环, 杨喜旺, 王智超, 等. 一种基于YOLOv4-TIA的林业害虫实时检测方法. 计算机工程, 2022, 48 (4): 255- 261.
URL
|
|
HOU R H , YANG X W , WANG Z C , et al. A real-time detection method for forestry pests based on YOLOv4-TIA. Computer Engineering, 2022, 48 (4): 255- 261.
URL
|
2 |
杨蜀秦, 宋志双, 尹瀚平, 等. 基于深度语义分割的无人机多光谱遥感作物分类方法. 农业机械学报, 2021, 52 (3): 185- 192.
|
|
YANG S Q , SONG Z S , YIN H P , et al. Crop classification method of UVA multispectral remote sensing based on deep semantic segmentation. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (3): 185- 192.
|
3 |
杨蜀秦, 王鹏飞, 王帅, 等. 基于MHSA+DeepLab v3+的无人机遥感影像小麦倒伏检测. 农业机械学报, 2022, 53 (8): 213-219, 239.
|
|
YANG S Q , WANG P F , WANG S , et al. Detection of wheat lodging in UAV remote sensing images based on multi-head self-attention DeepLab v3+. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (8): 213-219, 239.
|
4 |
WU J T , YANG G J , YANG X D , et al. Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network. Remote Sensing, 2019, 11 (6): 691.
doi: 10.3390/rs11060691
|
5 |
付虹雨, 崔国贤, 佘玮, 等. 结合无人机遥感和目标检测实现苎麻植株计数. 中国麻业科学, 2022, 44 (5): 267- 277.
|
|
FU H Y , CUI G X , SHE W , et al. Counting ramie plants using UAV remote sensing and target detection. Plant Fiber Sciences in China, 2022, 44 (5): 267- 277.
|
6 |
朱学岩, 张新伟, 顾梦梦, 等. 基于无人机可见光图像的云杉计数方法. 林业工程学报, 2021, 6 (4): 140- 146.
|
|
ZHU X Y , ZHANG X W , GU M M , et al. Spruce counting method based on UAV visible images. Journal of Forestry Engineering, 2021, 6 (4): 140- 146.
|
7 |
LIN Z , GUO W X . Cotton stand counting from unmanned aerial system imagery using MobileNet and CenterNet deep learning models. Remote Sensing, 2021, 13 (14): 2822.
doi: 10.3390/rs13142822
|
8 |
BARRETO A , LOTTES P , ISPIZUA YAMATI F R , et al. Automatic UAV-based counting of seedlings in sugar-beet field and extension to maize and strawberry. Computers and Electronics in Agriculture, 2021, 191, 106493.
doi: 10.1016/j.compag.2021.106493
|
9 |
MACHEFER M , LEMARCHAND F , BONNEFOND V , et al. Mask R-CNN refitting strategy for plant counting and sizing in UAV imagery. Remote Sensing, 2020, 12 (18): 3015.
doi: 10.3390/rs12183015
|
10 |
VONG C N , CONWAY L S , ZHOU J F , et al. Early corn stand count of different cropping systems using UAV-imagery and deep learning. Computers and Electronics in Agriculture, 2021, 186, 106214.
doi: 10.1016/j.compag.2021.106214
|
11 |
PANG Y , SHI Y Y , GAO S C , et al. Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery. Computers and Electronics in Agriculture, 2020, 178, 105766.
doi: 10.1016/j.compag.2020.105766
|
12 |
WANG L , XIANG L , TANG L , et al. A convolutional neural network-based method for corn stand counting in the field. Sensors (Basel, Switzerland), 2021, 21 (2): E507.
doi: 10.3390/s21020507
|
13 |
HASSAN S I , ALAM M M , ZIA M Y I , et al. Rice crop counting using aerial imagery and GIS for the assessment of soil health to increase crop yield. Sensors, 2022, 22 (21): 8567.
doi: 10.3390/s22218567
|
14 |
GAO M , YANG F B , WEI H , et al. Individual maize location and height estimation in field from UAV-borne LiDAR and RGB images. Remote Sensing, 2022, 14 (10): 2292.
doi: 10.3390/rs14102292
|
15 |
张静, 郭思梦, 韩迎春, 等. 基于无人机RGB图像的棉花产量估算. 中国农业科技导报, 2022, 24 (11): 112- 120.
|
|
ZHANG J , GUO S M , HAN Y C , et al. Estimation of cotton yield based on unmanned aerial vehicle RGB images. Journal of Agricultural Science and Technology, 2022, 24 (11): 112- 120.
|
16 |
OSCO L P , DOS SANTOS DE ARRUDA M , MARCATO J JR , et al. A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160, 97- 106.
doi: 10.1016/j.isprsjprs.2019.12.010
|
17 |
ARRUDA V F, PAIXAO T M, BERRIEL R F, et al. Cross-domain car detection using unsupervised image-to-image translation: from day to night[C]//Proceedings of the International Joint Conference on Neural Networks. Washington D.C., USA: IEEE Press, 2019: 1-8.
|
18 |
薛如翔, 卫俊杰, 周华伟, 等. 基于可见光-红外跨域迁移的红外弱小目标检测. 计算机科学, 2024, 51 (10): 287- 294.
doi: 10.11896/jsjkx.230800013
|
|
XUE R X , WEI J J , ZHOU H W , et al. Infrared dim and small target detection based on cross-domain migration of visible light and infrared. Computer Science, 2024, 51 (10): 287- 294.
doi: 10.11896/jsjkx.230800013
|
19 |
李梅玉, 李仕林, 赵明, 等. 对抗一致性约束的无监督域自适应绝缘子检测. 中国图象图形学报, 2022, 27 (4): 1148- 1160.
|
|
LI M Y , LI S L , ZHAO M , et al. Unsupervised domain adaptation insulator detection based on adversarial consistency constraints. Journal of Image and Graphics, 2022, 27 (4): 1148- 1160.
|
20 |
TIAN C W , ZHENG M H , ZUO W M , et al. A cross Transformer for image denoising. Information Fusion, 2024, 102, 102043.
doi: 10.1016/j.inffus.2023.102043
|
21 |
曹健, 陈怡梅, 李海生, 等. 基于深度学习的道路小目标检测综述. 计算机工程, 2023, 49 (10): 1- 12.
doi: 10.3778/j.issn.1002-8331.2209-0345
|
|
CAO J , CHEN Y M , LI H S , et al. Survey of small target detection on roads based on deep learning. Computer Engineering, 2023, 49 (10): 1- 12.
doi: 10.3778/j.issn.1002-8331.2209-0345
|
22 |
CUI J R , ZHENG H , ZENG Z W , et al. Real-time missing seedling counting in paddy fields based on lightweight network and tracking-by-detection algorithm. Computers and Electronics in Agriculture, 2023, 212, 108045.
doi: 10.1016/j.compag.2023.108045
|
23 |
赵亚男, 吴黎明, 陈琦. 基于多尺度融合SSD的小目标检测算法. 计算机工程, 2020, 46 (1): 247- 254.
URL
|
|
ZHAO Y N , WU L M , CHEN Q . Small object detection algorithm based on multi-scale fusion SSD. Computer Engineering, 2020, 46 (1): 247- 254.
URL
|
24 |
杨军奇, 冯全, 王书志, 等. 基于改进YOLOv4的田间密集小目标检测方法. 东北农业大学学报, 2022, 53 (5): 69- 79.
doi: 10.3969/j.issn.1005-9369.2022.05.008
|
|
YANG J Q , FENG Q , WANG S Z , et al. Method for detection of farmland dense smal target based on improved YOLOv4. Journal of Northeast Agricultural University, 2022, 53 (5): 69- 79.
doi: 10.3969/j.issn.1005-9369.2022.05.008
|
25 |
|
|
|
26 |
蒋心璐, 陈天恩, 王聪, 等. 大田环境下的农业害虫图像小目标检测算法. 计算机工程, 2024, 50 (1): 232- 241.
URL
|
|
JIANG X L , CHEN T E , WANG C , et al. Small target detection algorithm of agricultural pest image in field environment. Computer Engineering, 2024, 50 (1): 232- 241.
URL
|
27 |
|
28 |
|
29 |
|
30 |
YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2019: 6023-6032.
|
31 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 2117-2125.
|
32 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 8759-8768.
|
33 |
|
34 |
TARVAINEN A, VALPOLA H. Mean Teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[EB/OL]. [2024-01-08]. https://arxiv.org/abs/1703.01780v6.
|
35 |
|
36 |
|
37 |
|
38 |
DENG J H, LI W, CHEN Y H, et al. Unbiased mean teacher for cross-domain object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 4091-4101.
|
39 |
ZHOU H Y , JIANG F , LU H T . SSDA-YOLO: Semi-supervised domain adaptive YOLO for cross-domain object detection. Computer Vision and Image Understanding, 2023, 229, 103649.
doi: 10.1016/j.cviu.2023.103649
|
40 |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 2223-2232.
|
41 |
|
42 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2024-01-08]. https://arxiv.org/abs/2207.02696v1.
|