1 |
KAMAL U , TONMOY T I , DAS S , et al. Automatic traffic sign detection and recognition using SegU-Net and a modified tversky loss function with L1-constraint. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (4): 1467- 1479.
doi: 10.1109/TITS.2019.2911727
|
2 |
YAO J N , HUANG B Q , YANG S , et al. Traffic sign detection and recognition under low illumination. Machine Vision and Applications, 2023, 34 (5): 75.
doi: 10.1007/s00138-023-01417-y
|
3 |
霍爱清, 南思媛, 胥静蓉. 改进YOLOX的弱光线道路交通标志检测. 电子测量技术, 2023, 46 (6): 62- 67.
|
|
HUO A Q , NAN S Y , XU J R . Improved YOLOX for slow-light road traffic sign detection. Electronic Measurement Technology, 2023, 46 (6): 62- 67.
|
4 |
SUN X Q , LIU K K , CHEN L , et al. LLTH-YOLOv5: a real-time traffic sign detection algorithm for low-light scenes. Automotive Innovation, 2024, 7 (1): 121- 137.
doi: 10.1007/s42154-023-00249-w
|
5 |
DALBORGO V , MURARI T B , MADUREIRA V S , et al. Traffic sign recognition with deep learning: vegetation occlusion detection in Brazilian environments. Sensors, 2023, 23 (13): 5919.
doi: 10.3390/s23135919
|
6 |
WANG Q , FU W P . Research on traffic sign detection algorithm based on deep learning. Concurrency and Computation: Practice and Experience, 2018, 30 (22): e4675.
doi: 10.1002/cpe.4675
|
7 |
ZHANG H B , QIN L F , LI J , et al. Real-time detection method for small traffic signs based on Yolov3. IEEE Access, 2020, 8, 64145- 64156.
doi: 10.1109/ACCESS.2020.2984554
|
8 |
王泽华. 改进YOLOv4在道路交通标志识别的应用研究[D]. 石家庄: 河北工程大学, 2021.
|
|
WANG Z H. Based on the application of improving YOLOv4 algorithm in road traffic sign recognition[D]. Shijiazhuang: Hebei University of Engineering, 2021. (in Chinese)
|
9 |
ZHANG R Y , ZHENG K M , SHI P C , et al. Traffic sign detection based on the improved YOLOv5. Applied Sciences, 2023, 13 (17): 9748.
doi: 10.3390/app13179748
|
10 |
|
11 |
赵宏, 冯宇博. 一种基于CGS-Ghost YOLO的交通标志检测研究. 计算机工程, 2023, 49 (12): 194- 204.
doi: 10.19678/j.issn.1000-3428.0066520
|
|
ZHAO H , FENG Y B . A study on traffic sign detection based on CGS-Ghost YOLO. Computer Engineering, 2023, 49 (12): 194- 204.
doi: 10.19678/j.issn.1000-3428.0066520
|
12 |
ORTATAŞ F N, KAYA M. Performance evaluation of YOLOv5, YOLOv7, and YOLOv8 models in traffic sign detection[C]//Proceedings of the 8th International Conference on Computer Science and Engineering. Washington D. C., USA: IEEE Press, 2023: 151-156.
|
13 |
尹靖涵, 瞿绍军, 姚泽楷, 等. 基于YOLOv5的雾霾天气下交通标志识别模型. 计算机应用, 2022, 42 (9): 2876- 2884.
|
|
YIN J H , QU S J , YAO Z K , et al. Traffic sign recognition model under hazy weather based on YOLOv5. Journal of Computer Applications, 2022, 42 (9): 2876- 2884.
|
14 |
姚宇捷, 彭育辉, 陈泽辉, 等. 支持抗光照目标检测的改进YOLO算法. 汽车工程, 2023, 45 (5): 777- 785.
|
|
YAO Y J , PENG Y H , CHEN Z H , et al. Improved YOLO algorithm supporting anti-illumination object detection. Automotive Engineering, 2023, 45 (5): 777- 785.
|
15 |
DANG T P , TRAN N T , TO V H , et al. Improved YOLOv5 for real-time traffic signs recognition in bad weather conditions. The Journal of Supercomputing, 2023, 79 (10): 10706- 10724.
doi: 10.1007/s11227-023-05097-3
|
16 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7464-7475.
|
17 |
石镇岳, 侯婷, 苏勇东. 改进YOLOv7的交通标志检测算法. 计算机系统应用, 2023, 32 (10): 157- 165.
|
|
SHI Z Y , HOU T , SU Y D . Improved YOLOv7 algorithm for traffic sign detection. Computer Systems & Applications, 2023, 32 (10): 157- 165.
|
18 |
杜娟, 崔少华, 晋美娟, 等. 改进YOLOv7的复杂道路场景目标检测算法. 计算机工程与应用, 2024, 60 (1): 96- 103.
|
|
DU J , CUI S H , JIN M J , et al. Improved YOLOv7 algorithm for object detection in complex road scenes. Computer Engineering and Applications, 2024, 60 (1): 96- 103.
|
19 |
YIN X C, YU Z D, FEI Z T, et al. PE-YOLO: pyramid enhancement network for dark object detection[C] //Proceedings of International Conference on Artificial Neural Networks. Berlin, Germany: Springer, 2023: 163-174.
|
20 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2023-10-10]. https://arxiv.org/pdf/2010.11929.
|
21 |
PAN X R, GE C J, LU R, et al. On the integration of self-attention and convolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 815-825.
|
22 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 770-778.
|
23 |
|
24 |
ZHANG J M , ZOU X , KUANG L D , et al. CCTSDB 2021: a more comprehensive traffic sign detection benchmark. Human-centric Computing and Information Sciences, 2022, 12, 23.
|