1 |
刘峥颢, 安稳飞. 我国城市生活垃圾标准制定实施现状及建议. 中国标准化, 2020 (2): 99- 104.
|
|
LIU Z H, AN W F. The current situation and smggestion on developing and implementing municipal solid waste standards in China. China Standardization, 2020 (2): 99- 104.
|
2 |
金山. 洁净城市的第一步是垃圾分类. 防灾博览, 2017 (2): 60- 61.
|
|
JIN S. The first step in a clean city is garbage classification. Overviewof Disaster Prevention, 2017 (2): 60- 61.
|
3 |
马永喜, 辛雅儒, 申晨. 人工智能技术应用对城市居民垃圾分类成效的影响——一个实地实验研究. 经营与管理, 2022 (10): 116- 122.
|
|
MA Y X, XIN Y R, SHEN C. The impact of artificial intelligence technology application on the effectiveness of urban residents' garbage classification: a field experimental study. Management and Administration, 2022 (10): 116- 122.
|
4 |
高永强, 冯露之, 平安, 等. 生活垃圾自动识别分类系统研究. 数字通信世界, 2022 (3): 122- 124.
|
|
GAO Y Q, FENG L Z, PING A, et al. Research on automatic identification and classification system of domestic waste. Digital Communication World, 2022 (3): 122- 124.
|
5 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4510-4520.
|
6 |
HOWARD A, SANDLER M, CHU B, et al. Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 1314-1324.
|
7 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6848-6856.
|
8 |
|
9 |
|
10 |
|
11 |
CUI C, GUO R Y, DU Y N, et al. Beyond self-supervision: a simple yet effective network distillation alternative to improve backbones[EB/OL]. [2024-01-15]. https://arxiv.org/abs/2103.05959v1.
|
12 |
|
13 |
|
14 |
|
15 |
RABANO S L, CABATUAN M K, SYBINGCO E, et al. Common garbage classification using mobilenet[C]//Proceedings of the 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). Washington D. C., USA: IEEE Press, 2018: 1-4.
|
16 |
RUIZ V, SÁNCHEZ Á, VÉLEZ J F, et al. Automatic image-based waste classification[C]//Proceedings of the 8th International Work-Conference on the Interplay Between Natural and Artificial Computation. Berlin, Germany: Springer, 2019: 422-431.
|
17 |
ADEDEJI O, WANG Z H. Intelligent waste classification system using deep learning convolutional neural network. Procedia Manufacturing, 2019, 35, 607- 612.
|
18 |
|
19 |
ZIOUZIOS D, TSIKTSIRIS D, BARAS N, et al. A distributed architecture for smart recycling using machine learning. Future Internet, 2020, 12 (9): 141.
URL
|
20 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 1-9.
|
21 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 4700-4708.
|
22 |
刘学博, 张民, 龚声蓉. 大模型智能与安全研究综述. 常熟理工学院学报, 2024, 38 (2): 1-6, 11.
|
|
LIU X B, ZHANG M, GONG S R. A comprehensive review of large language models and security intelligence analysis. Journal of Changshu Institute of Technology(Natural Sciences), 2024, 38 (2): 1-6, 11.
|
23 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
24 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2024-01-15]. https://arxiv.org/abs/2010.11929.
|
25 |
HE K M, CHEN X L, XIE S, et al. Masked autoencoders are scalable vision learners[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 16000-16009.
|
26 |
MAO A, MOHRI M, ZHONG Y. Cross-entropy loss functions: theoretical analysis and applications[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: AAAI Press, 2023: 23803-23828.
|