1 |
ZHAO J , XIE X J , XU X , et al. Multi-view learning overview: recent progress and new challenges. Information Fusion, 2017, 38, 43- 54.
|
2 |
滕少华, 盛文涛, 滕璐瑶, 等. 融合加权不一致性的多视图聚类. 小型微型计算机系统, 2025, 46 (2): 381- 388.
URL
|
|
TENG S H , SHENG W T , TENG L Y , et al. Multiview graph clustering with fusion of weighted inconsistency. Journal of Chinese Computer Systems, 2025, 46 (2): 381- 388.
URL
|
3 |
刘思慧, 高全学, 宋伟, 等. 基于加权张量低秩约束的多视图谱聚类. 计算机工程, 2024, 50 (1): 129- 137.
doi: 10.19678/j.issn.1000-3428.0068270
|
|
LIU S H , GAO Q X , SONG W , et al. Multiview spectral clustering based on weighted tensor low-rank constraint. Computer Engineering, 2024, 50 (1): 129- 137.
doi: 10.19678/j.issn.1000-3428.0068270
|
4 |
纪霞, 施明远, 周芃, 等. 自适应相似图联合优化的多视图聚类. 计算机学报, 2024, 47 (2): 310- 322.
|
|
JI X , SHI M Y , ZHOU P , et al. Multi-view clustering based on adaptive similarity graph joint optimization. Chinese Journal of Computer, 2024, 47 (2): 310- 322.
|
5 |
MEI Y Y , REN Z W , WU B , et al. Robust graph-based multi-view clustering in latent embedding space. International Journal of Machine Learning and Cybernetics, 2022, 13 (2): 497- 508.
|
6 |
WANG X B , LEI Z , GUO X J , et al. Multi-view subspace clustering with intactness-aware similarity. Pattern Recognition, 2019, 88, 50- 63.
|
7 |
WANG Y X , ZHANG Y J . Nonnegative matrix factorization: a comprehensive review. IEEE Transactions on Knowledge and Data Engineering, 2012, 25 (6): 1336- 1353.
doi: 10.1109/TKDE.2012.51
|
8 |
YAO X , CHEN X , MATVEEV I A , et al. Semi-paired multiview clustering based on nonnegative matrix factorization. Journal of Computer and Systems Sciences International, 2019, 58 (4): 579- 594.
|
9 |
LIANG N Y , YANG Z Y , LI Z N , et al. Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints. Knowledge-Based Systems, 2020, 194, 105582.
doi: 10.1016/j.knosys.2020.105582
|
10 |
LI C L , CHE H J , LEUNG M F , et al. Robust multi-view non-negative matrix factorization with adaptive graph and diversity constraints. Information Sciences, 2023, 634, 587- 607.
|
11 |
张荣国, 曹俊辉, 胡静, 等. 基于非负正交矩阵分解的多视图聚类图像分割算法. 模式识别与人工智能, 2023, 36 (6): 556- 571.
|
|
ZHANG R G , CAO J H , HU J , et al. Non-negative orthogonal matrix factorization based multi-view clustering image segmentation algorithm. Pattern Recognition and Artificial Intelligence, 2023, 36 (6): 556- 571.
|
12 |
YEO C, RAMCHANDRAN K. Robust distributed multi-view video compression for wireless camera networks[C]//Proceedings of the Visual Communications and Image Processing 2007. Washington D.C., USA: IEEE Press, 2007: 250-258.
|
13 |
YANG Q , LIU Y , CHEN T J , et al. Federated machine learning. ACM Transactions on Intelligent Systems and Technology, 2019, 10 (2): 1- 19.
|
14 |
HUANG S D , SHI W , XU Z L , et al. Efficient federated multi-view learning. Pattern Recognition, 2022, 131, 108817.
|
15 |
WANG H T , LI A , SHEN B L , et al. Federated multi-view spectral clustering. IEEE Access, 2020, 8, 202249- 202259.
|
16 |
FLANAGAN A, OYOMNO W, GRIGORIEVSKIY A, et al. Federated multi-view matrix factorization for personalized recommendations[EB/OL]. [2023-09-05]. https://arxiv.org/abs/2004.04256.
|
17 |
CHE S C , KONG Z M , PENG H , et al. Federated multi-view learning for private medical data integration and analysis. ACM Transactions on Intelligent Systems and Technology, 2022, 13 (4): 1- 23.
|
18 |
KAIROUZ P , MCMAHAN H B , AVENT B , et al. Advances and open problems in federated learning. Foundations and Trends in Machine Learning, 2021, 14 (1/2): 1- 210.
|
19 |
LI T , SAHU A K , TALWALKAR A , et al. Federated learning: challenges, methods, and future directions. IEEE Signal Processing Magazine, 2020, 37 (3): 50- 60.
|
20 |
LIU J L , TENG S H , FEI L K , et al. A novel consensus learning approach to incomplete multi-view clustering. Pattern Recognition, 2021, 115, 107890.
|
21 |
|
22 |
|
23 |
FU L L , LIN P F , VASILAKOS A V , et al. An overview of recent multi-view clustering. Neurocomputing, 2020, 402, 148- 161.
|
24 |
|
25 |
LI Z L , TANG C , LIU X W , et al. Consensus graph learning for multi-view clustering. IEEE Transactions on Multimedia, 2022, 24, 2461- 2472.
|
26 |
|
27 |
MOKHTARI A , SHI W , LING Q , et al. A decentralized second-order method with exact linear convergence rate for consensus optimization. IEEE Transactions on Signal and Information Processing over Networks, 2016, 2 (4): 507- 522.
|
28 |
|
29 |
HUANG S D , TSANG I W , XU Z L , et al. Measuring diversity in graph learning: a unified framework for structured multi-view clustering. IEEE Transactions on Knowledge and Data Engineering, 2021, 34 (12): 5869- 5883.
|
30 |
ZHAN K , NIE F , WANG J , et al. Multiview consensus graph clustering. IEEE Transactions on Image Processing, 2019, 28 (3): 1261- 1270.
|