1 |
SEETHARAMAN G, LAKHOTIA A, BLASCH E P. Unmanned vehicles come of age: the DARPA grand challenge. Computer, 2006, 39(12): 26- 29.
|
2 |
杨超. 自动驾驶汽车行为预测综述. 汽车文摘, 2022(10): 11- 18.
|
|
YANG C. Overview on behavior prediction for autonomous vehicles. Automotive Digest, 2022(10): 11- 18.
|
3 |
LI S S, LI N, GIRARD A, et al. Decision making in dynamic and interactive environments based on cognitive hierarchy theory, Bayesian inference, and predictive control[C]//Proceedings of the 58th IEEE Conference on Decision and Control. Washington D. C., USA: IEEE Press, 2019: 2181-2187.
|
4 |
CHANDRA R, MANOCHA D. GamePlan: game-theoretic multi-agent planning with human drivers at intersections, round abouts, and merging. IEEE Robotics and Automation Letters, 2022, 7(2): 2676- 2683.
doi: 10.1109/LRA.2022.3144516
|
5 |
SHU K Q, YU H L, CHEN X X, et al. Autonomous driving at intersections: a behavior-oriented critical-turning-point approach for decision making. ASME Transactions on Mechatronics, 2021, 27(1): 234- 244.
|
6 |
曹栋发, 李勇, 胡创业, 等. 基于用户画像与Stackelberg博弈的交通环岛通行策略. 计算机工程, 2023, 49(9): 208- 216.
URL
|
|
CAO D F, LI Y, HU C Y, et al. Traffic strategy of roundabout based on user portrait and Stackelberg game. Computer Engineering, 2023, 49(9): 208- 216.
URL
|
7 |
WIEST J, HOFFKEN M, KRESEL U, et al. Probabilistic trajectory prediction with Gaussian mixture models[C]//Proceedings of IEEE Intelligent Vehicles Symposium. Washington D. C., USA: IEEE Press, 2012: 141-146.
|
8 |
GINDELE T, BRECHTEL S, DILLMANN R. Learning driver behavior models from traffic observations for decision making and planning. IEEE Intelligent Transportation Systems Magazine, 2015, 7(1): 69- 79.
doi: 10.1109/MITS.2014.2357038
|
9 |
KIM B, KANG C M, KIM J, et al. Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network[C]//Proceedings of the 20th IEEE International Conference on Intelligent Transportation Systems. Washington D. C., USA: IEEE Press, 2017: 399-404.
|
10 |
LEE N, CHOI W, VERNAZA P, et al. DESIRE: distant future prediction in dynamic scenes with interacting agents[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 336-345
|
11 |
朱自升. 基于神经网络的车辆轨迹预测算法的研究与实现[D]. 西安: 西安电子科技大学, 2018.
|
|
ZHU Z S. Research and implementation of vehicle trajectory prediction algorithm based on neural network[D]. Xi'an: Xidian University, 2018. (in Chinese)
|
12 |
PAN J C, SUN H Y, XU K C, et al. Lane-attention: predicting vehicles' moving trajectories by learning their attention over lanes[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D. C., USA: IEEE Press, 2020: 7949-7956.
|
13 |
TANG C, SALAKHUTDINOV R R. Multiple futures prediction[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 32-41.
|
14 |
吴晓建, 危一华, 王爱春, 等. 基于融合Dropout与注意力机制的LSTM-GRU车辆轨迹预测. 湖南大学学报(自然科学版), 2023, 50(4): 65- 75.
|
|
WU X J, WEI Y H, WANG A C, et al. Vehicle trajectory prediction based on LSTM-GRU integrating dropout and attention mechanism. Journal of Hunan University (Natural Sciences), 2023, 50(4): 65- 75.
|
15 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9(8): 1735- 1780.
|
16 |
PARK S H, KIM B, KANG C M, et al. Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture[C]//Proceedings of IEEE Intelligent Vehicles Symposium. Washington D. C., USA: IEEE Press, 2018: 1672-1678.
|
17 |
FERNANDO T, DENMAN S, SRIDHARAN S, et al. Soft+Hardwired attention: an LSTM framework for human trajectory prediction and abnormal event detection. Neural Networks, 2018, 108, 466- 478.
|
18 |
ZHANG P, OUYANG W L, ZHANG P F, et al. SR-LSTM: state refinement for LSTM towards pedestrian trajectory prediction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 12085-12094.
|
19 |
LIN L, LI W Z, BI H K, et al. Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms. IEEE Intelligent Transportation Systems Magazine, 2021, 14(2): 197- 208.
|
20 |
LECUN Y, BENGIO Y. Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 1995, 3361(10): 1995.
|
21 |
ZHANG K P, ZHANG Z P, LI Z F, et al. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 2016, 23(10): 1499- 1503.
|
22 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 1-9.
|
23 |
ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 961-971.
|
24 |
DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1468-1476.
|
25 |
DAI S Z, LI L, LI Z H. Modeling vehicle interactions via modified LSTM models for trajectory prediction. IEEE Access, 2019, 7, 38287- 38296.
|
26 |
ZHAO T Y, XU Y F, MONFORT M, et al. Multi-agent tensor fusion for contextual trajectory prediction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 12126-12134.
|