1 |
WANG H W, ZHANG F Z, XIE X, et al. DKN[C]//Proceedings of the 2018 World Wide Web Conference. New York, USA: ACM Press, 2018: 1835-1844.
|
2 |
ZHANG Y F , CHEN X . Explainable recommendation: a survey and new perspectives. Foundations and Trends in Information Retrieval, 2020, 14 (1): 91- 101.
|
3 |
CHENG H T, KOC L, HARMSEN J, et al. Wide & Deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Washington D.C., USA: IEEE Press, 2016: 7-10.
|
4 |
|
5 |
HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York, USA: ACM Press, 2017: 173-182.
|
6 |
HE X N, CHUA T S, HE X N, et al. Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2017: 355-364.
|
7 |
XIAO J, YE H, HE X N, et al. Attentional factorization machines: learning the weight of feature interactions via attention networks[EB/OL]. [2023-11-08]. https://arxiv.org/abs/1708.04617v1.
|
8 |
YU X, REN X, SUN Y Z, et al. Personalized entity recommendation[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2014: 283-292.
|
9 |
LUO C, PANG W, WANG Z, et al. Hete-CF: social-based collaborative filtering recommendation using heterogeneous relations[C]//Proceedings of the IEEE International Conference on Data Mining. Washington D.C., USA: IEEE Press, 2014: 917-922.
|
10 |
HU B B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-N recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2018: 1531-1540.
|
11 |
WANG X, WANG D X, XU C R, et al. Explainable reasoning over knowledge graphs for recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Pres, 2019: 5329-5336.
|
12 |
YANG P , AI C M , YAO Y , et al. EKPN: enhanced knowledge-aware path network for recommendation. Applied Intelligence, 2022, 52 (8): 9308- 9319.
doi: 10.1007/s10489-021-02758-9
|
13 |
LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. New York, USA: ACM Press, 2015: 2181-2187.
|
14 |
ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 353-362.
|
15 |
CAO Y X, WANG X, HE X N, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 151-161.
|
16 |
WANG H W, ZHANG F Z, WANG J L, et al. RippleNet[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2018: 417-426.
|
17 |
WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 3307-3313.
|
18 |
WANG H W, ZHANG F Z, ZHANG M D, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 968-977.
|
19 |
WANG X, HE X N, CAO Y X, et al. KGAT[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 950-958.
|
20 |
WANG H W, ZHANG F Z, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 2000-2010.
|
21 |
WANG Z, LIN G Y, TAN H B, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2020: 219-228.
|
22 |
LIU Y , YANG S S , XU Y H , et al. Contextualized graph attention network for recommendation with item knowledge graph. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (1): 181- 195.
|
23 |
SHA X , SUN Z , ZHANG J . Hierarchical attentive knowledge graph embedding for personalized recommendation. Electronic Commerce Research and Applications, 2021, 48, 101071.
doi: 10.1016/j.elerap.2021.101071
|
24 |
WANG X, HUANG T L, WANG D X, et al. Learning intents behind interactions with knowledge graph for recommendation[C]//Proceedings of the Web Conference 2021. New York, USA: ACM Press, 2021: 878-887.
|
25 |
ZOU D, WEI W, WANG Z Y, et al. Improving knowledge-aware recommendation with multi-level interactive contrastive learning[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2022: 2817-2826.
|
26 |
MA T , HUANG L T , LU Q Q , et al. KR-GCN: knowledge-aware reasoning with graph convolution network for explainable recommendation. ACM Transactions on Information Systems, 2023, 41 (1): 1- 27.
|
27 |
YUAN M H, WAN J, WANG D Y. CRM-SBKG: effective citation recommendation by Siamese BERT and knowledge graph[C]//Proceedings of the IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). Washington D.C., USA: IEEE Press, 2023: 909-914.
|
28 |
ZHANG H Y , SHEN X X , YI B L , et al. KGAN: knowledge grouping aggregation network for course recommendation in MOOCs. Expert Systems with Applications, 2023, 211, 118344.
doi: 10.1016/j.eswa.2022.118344
|
29 |
汤志康, 武毓琦, 李春英, 等. 基于知识图谱卷积网络的学习资源推荐. 计算机工程, 2024, 50 (9): 153- 160.
doi: 10.19678/j.issn.1000-3428.0068409
|
|
TANG Z K , WU Y Q , LI C Y , et al. Recommendation of learning resource based on knowledge graph convolutional network. Computer Engineering, 2024, 50 (9): 153- 160.
doi: 10.19678/j.issn.1000-3428.0068409
|
30 |
束玮, 李翔, 孙纪舟, 等. 基于动态兴趣传播和知识图谱的推荐方法. 智能系统学报, 2024, 19 (4): 997- 1006.
|
|
SHU W , LI X , SUN J Z , et al. Recommendation method based on dynamic interest propagation and knowledge graph. CAAI Transactions on Intelligent Systems, 2024, 19 (4): 997- 1006.
|
31 |
郭伟, 裴帅华. 基于协同信号的知识图注意力网络推荐算法. 计算机工程与设计, 2024, 45 (3): 911- 917.
|
|
GUO W , PEI S H . Collaborative signal knowledge graph attention network for recommender algorithm. Computer Engineering and Design, 2024, 45 (3): 911- 917.
|
32 |
GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neura networks[C]//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. [S. l. ]: JMLR, 2010: 249-256.
|
33 |
|