1 |
BERBECARU D G, PETRAGLIA G. TLS-monitor: a monitor for TLS attacks[C]//Proceedings of the 20th IEEE Consumer Communications & Networking Conference (CCNC). Washington D.C., USA: IEEE Press, 2023: 1-6.
|
2 |
董卫宇, 李海涛, 王瑞敏, 等. 基于堆叠卷积注意力的网络流量异常检测模型. 计算机工程, 2022, 48(9): 12- 19.
URL
|
|
DONG W Y, LI H T, WANG R M, et al. Network traffic anomaly detection model based on stacked convolutional attention. Computer Engineering, 2022, 48(9): 12- 19.
URL
|
3 |
SEBBAR A, ZKIK K, BADDI Y, et al. MitM detection and defense mechanism CBNA-RF based on machine learning for large-scale SDN context. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(12): 5875- 5894.
doi: 10.1007/s12652-020-02099-4
|
4 |
HUANG L S, RICE A, ELLINGSEN E, et al. Analyzing forged SSL certificates in the wild[C]//Proceedings of the IEEE Symposium on Security and Privacy. Washington D.C., USA: IEEE Press, 2014: 83-97.
|
5 |
WAKED L, MANNAN M, YOUSSEF A. The sorry state of TLS security in enterprise interception appliances. Digital Threats: Research and Practice, 2020, 1(2): 1- 26.
|
6 |
DE CARNÉ DE CARNAVALET X, MANNAN M. Killed by proxy: analyzing client-end TLS interception software[C]//Proceedings of 2016 Network and Distributed System Security Symposium. Washington D.C., USA: IEEE Press, 2016: 21-38.
|
7 |
DURUMERIC Z, MA Z N, SPRINGALL D, et al. The security impact of HTTPS interception[C]//Proceedings of 2017 Network and Distributed System Security Symposium. Washington D.C., USA: IEEE Press, 2017: 26-40.
|
8 |
BOUKHTOUTA A, LAKHDARI N E, MOKHOV S A, et al. Towards fingerprinting malicious traffic. Procedia Computer Science, 2013, 19, 548- 555.
doi: 10.1016/j.procs.2013.06.073
|
9 |
ALSHAMMARI R, ZINCIR-HEYWOOD N. Generalization of signatures for SSH encrypted traffic identification[C]//Proceedings of the IEEE Symposium on Computational Intelligence in Cyber Security. Washington D.C., USA: IEEE Press, 2009: 167-174.
|
10 |
ALSHAMMARI R, ZINCIR-HEYWOOD A N. Machine learning based encrypted traffic classification: identifying SSH and Skype[C]//Proceedings of the IEEE Symposium on Computational Intelligence for Security and Defense Applications. Washington D.C., USA: IEEE Press, 2009: 1-8.
|
11 |
ALSHAMMARI R, ZINCIR-HEYWOOD A N. Can encrypted traffic be identified without port numbers, IP addresses and payload inspection?. Computer Networks, 2011, 55(6): 1326- 1350.
doi: 10.1016/j.comnet.2010.12.002
|
12 |
赵荻, 尹志超, 崔苏苏, 等. 基于图表示的恶意TLS流量检测方法. 信息安全研究, 2024, 10(3): 209- 215.
|
|
ZHAO D, YIN Z C, CUI S S, et al. Malicious TLS traffic detection based on graph representation. Journal of Information Security Research, 2024, 10(3): 209- 215.
|
13 |
BOUKHTOUTA A, MOKHOV S A, LAKHDARI N E, et al. Network malware classification comparison using DPI and flow packet headers. Journal of Computer Virology and Hacking Techniques, 2016, 12(2): 69- 100.
doi: 10.1007/s11416-015-0247-x
|
14 |
ANDERSON B, MCGREW D. Identifying encrypted malware traffic with contextual flow data[C]//Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. New York, USA: ACM Press, 2016: 35-46.
|
15 |
MCGREW D, ANDERSON B. Enhanced telemetry for encrypted threat analytics[C]//Proceedings of the 24th IEEE International Conference on Network Protocols (ICNP). Washington D.C., USA: IEEE Press, 2016: 1-6.
|
16 |
冯景瑜, 王锦康, 张宝军, 等. 基于信任过滤的轻量级加密流量异常检测方案. 西安邮电大学学报, 2023, 28(5): 56- 66.
|
|
FENG J Y, WANG J K, ZHANG B J, et al. Anomaly detection scheme of lightweight encrypted traffic based on trust filtering. Journal of Xi'an University of Posts and Telecommunications, 2023, 28(5): 56- 66.
|
17 |
梁添鑫, 郭晓军, 杨明芬. 基于CNN-BiGRU的DNS协议中间人攻击检测方法. 西藏科技, 2024, 46(5): 47- 54.
|
|
LIANG T X, GUO X J, YANG M F. A man-in-the-middle attack detection method for DNS protocol based on CNN-BiGRU. Xizang Science and Technology, 2024, 46(5): 47- 54.
|
18 |
靳玮琨, 郭晓军, 杨明芬. 基于Laplace机制的加密流量特征集隐私保护方法. 西藏科技, 2024, 46(4): 71- 80.
|
|
JIN W K, GUO X J, YANG M F. A privacy-preserving method for encrypted traffic feature set based on Laplace mechanism. Xizang Science and Technology, 2024, 46(4): 71- 80.
|
19 |
DRAPER-GIL G, LASHKARI A H, MAMUN M, et al. Characterization of encrypted and VPN traffic using time-related features[C]//Proceedings of International Conference on Information Systems Security and Privacy. Washington D.C., USA: IEEE Press, 2016: 407-414.
|
20 |
|
21 |
WENG Z Q, CHEN T M, ZHU T T, et al. TLSmell: direct identification on malicious HTTPs encryption traffic with simple connection-specific indicators. Computer Systems Science and Engineering, 2021, 37(1): 105- 119.
doi: 10.32604/csse.2021.015074
|
22 |
ZHANG J B. DeepMAL: a CNN-LSTM model for malware detection based on dynamic semantic behaviours[C]//Proceedings of the International Conference on Computer Information and Big Data Applications (CIBDA). Washington D.C., USA: IEEE Press, 2020: 313-316.
|
23 |
CHEN L C, GAO S, LIU B X, et al. THS-IDPC: a three-stage hierarchical sampling method based on improved density peaks clustering algorithm for encrypted malicious traffic detection. The Journal of Supercomputing, 2020, 76(9): 7489- 7518.
doi: 10.1007/s11227-020-03372-1
|
24 |
李慧慧, 张士庚, 宋虹, 等. 结合多特征识别的恶意加密流量检测方法. 信息安全学报, 2021, 6(2): 129- 142.
|
|
LI H H, ZHANG S G, SONG H, et al. Robust malicious encrypted traffic detection based with multiple features. Journal of Cyber Security, 2021, 6(2): 129- 142.
|
25 |
ZENG Y, GU H X, WEI W T, et al. Deep-Full-Range: a deep learning based network encrypted traffic classification and intrusion detection framework. IEEE Access, 2019, 7, 45182- 45190.
doi: 10.1109/ACCESS.2019.2908225
|