| 1 |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Berlin, Germany: Springer, 2017: 1025-1035.
|
| 2 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of International Conference on Learning Representations. New York, USA: ACM, 2016: 1-10.
|
| 3 |
VELI AČG KOVI AC'G P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of International Conference on Learning Representations. New York, USA: ACM, 2018: 1-10.
|
| 4 |
SANKAR A, LIU Y, YU J, et al. Graph neural networks for friend ranking in large-scale social platforms[C]//Proceedings of the Web Conference 2021. New York, USA: ACM, 2021: 2535-2546.
|
| 5 |
吴志强, 解庆, 李琳, 等. 基于多模态融合的图神经网络推荐算法. 计算机工程, 2024, 50 (1): 91- 100.
doi: 10.19678/j.issn.1000-3428.0066929
|
|
WU Z Q , XIE Q , LI L , et al. Graph neural network recommendation algorithm based on multimodal fusion. Computer Engineering, 2024, 50 (1): 91- 100.
doi: 10.19678/j.issn.1000-3428.0066929
|
| 6 |
KENGKANNA A, OHUE M. Enhancing model learning and interpretation using multiple molecular graph representations for compound property and activity prediction[C]//Proceedings of the IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). Eindhoven, Netherlands: IEEE Press, 2023: 1-8.
|
| 7 |
吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用. 计算机学报, 2022, 45 (1): 35- 68.
|
|
WU B , LIANG X , ZHANG S S , et al. Advances and applications in graph neural network. Chinese Journal of Computers, 2022, 45 (1): 35- 68.
|
| 8 |
LI J, ZHANG T, TIAN H, et al. SGCN: a graph sparsifier based on graph convolutional networks[C]//Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2020: 275-287.
|
| 9 |
CHEN T, SUI Y, CHEN X, et al. A unified lottery ticket hypothesis for graph neural networks[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2021: 1695-1706.
|
| 10 |
WANG S, ERAVCI B, GULIYEV R, et al. Low-bit quantization for deep graph neural networks with smoothness-aware message propagation[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2023: 2626-2636.
|
| 11 |
YANG Y D, QIU J Y, SONG M L, et al. Distilling knowledge from graph convolutional networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE Press, 2020: 7072-7081.
|
| 12 |
DENG X, ZHANG Z F. Graph-free knowledge distillation for graph neural networks[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence. Montreal, Canada: International Joint Conferences on Artificial Intelligence Organization, 2021: 2321-2327.
|
| 13 |
HUO C Y , JIN D , LI Y W , et al. T2-GNN: graph neural networks for graphs with incomplete features and structure via teacher-student distillation. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37 (4): 4339- 4346.
doi: 10.1609/aaai.v37i4.25553
|
| 14 |
刘静, 郑铜亚, 郝沁汾. 图知识蒸馏综述: 算法分类与应用分析. 软件学报, 2023, 35 (2): 675- 710.
|
|
LIU J , ZHENG T Y , HAO Q F . Survey on knowledge distillation with graph: algorithms classification and application analysis. Journal of Software, 2023, 35 (2): 675- 710.
|
| 15 |
WU L, LIN H, HUANG Y, et al. Quantifying the knowledge in GNNs for reliable distillation into MLPs[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2023: 37571-37581.
|
| 16 |
YANG L, TIAN Y, XU M, et al. VQGraph: rethinking graph representation space for bridging GNNs and MLPs[C]//Proceedings of International Conference on Learning Representations. New York, USA: ACM, 2024: 1-10.
|
| 17 |
YANG C, LIU J W, SHI C. Extract the knowledge of graph neural networks and go beyond it: an effective knowledge distillation framework[C]//Proceedings of the Web Conference 2021. New York, USA: ACM, 2021: 1227-1237.
|
| 18 |
ZHANG S, LIU Y, SUN Y, et al. Graph-less neural networks: teaching old MLPs new tricks via distillation[C]//Proceedings of International Conference on Learning Representations. New York, USA: ACM, 2021: 1-10.
|
| 19 |
TIAN Y, ZHANG C, GUO Z, et al. Learning MLPs on graphs: a unified view of effectiveness, robustness, and efficiency[C]//Proceedings of International Conference on Learning Representations. New York, USA: ACM, 2022: 1-10.
|
| 20 |
TAN Q Y, ZHA D C, LIU N H, et al. Double wins: boosting accuracy and efficiency of graph neural networks by reliable knowledge distillation[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Shanghai, China: IEEE Press, 2023: 1343-1348.
|
| 21 |
WU L R , LIN H T , HUANG Y F , et al. Extracting low-/high-frequency knowledge from graph neural networks and injecting it into MLPs: an effective GNN-to-MLP distillation framework. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37 (9): 10351- 10360.
doi: 10.1609/aaai.v37i9.26232
|
| 22 |
HINTON G , VINYALS O , DEAN J . Distilling the knowledge in a neural network. Computer Science, 2015, 14 (7): 38- 39.
|
| 23 |
GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[C]//Proceedings of International Conference on Learning Representations. New York, USA: ACM, 2015: 1-10.
|
| 24 |
TIAN Y, KRISHNAN D, ISOLA P. Contrastive representation distillation[C]//Proceedings of International Conference on Learning Representations. New York, USA: ACM, 2019: 1-10.
|
| 25 |
JOSHI C K , LIU F , XUN X , et al. On representation knowledge distillation for graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (4): 4656- 4667.
doi: 10.1109/TNNLS.2022.3223018
|
| 26 |
GASTEIGER J, BOJCHEVSKI A, GVNNEMANN S. Predict then propagate: graph neural networks meet personalized PageRank[C]//Proceedings of International Conference on Learning Representations. New York, USA: ACM, 2018: 1-10.
|