作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (7): 100-110. doi: 10.19678/j.issn.1000-3428.0069099

• 人工智能与模式识别 • 上一篇    下一篇

基于二部图对比学习的特征增强推荐算法

余鹏, 杨佳琦, 陈欣然, 贺超波*()   

  1. 华南师范大学计算机学院,广东 广州 510631
  • 收稿日期:2023-12-26 出版日期:2025-07-15 发布日期:2024-05-29
  • 通讯作者: 贺超波
  • 基金资助:
    国家自然科学基金面上项目(62077045); 广东省自然科学基金(2019A1515011292)

Feature-enhanced Recommendation Algorithm Based on Bipartite Graph Contrastive Learning

YU Peng, YANG Jiaqi, CHEN Xinran, HE Chaobo*()   

  1. School of Computer Science, South China Normal University, Guangzhou 510631, Guangdong, China
  • Received:2023-12-26 Online:2025-07-15 Published:2024-05-29
  • Contact: HE Chaobo

摘要:

信息过载已成为大数据时代面临的一个普遍问题,推荐算法是解决该问题的有效手段。现有的推荐算法具有不同程度的有效性,但仍面临着如何学习更高质量的项目和用户特征以提升推荐性能的挑战。提出一种基于二部图对比学习的特征增强推荐算法FRBGCL。设计一个项目特征初始化模块,利用图卷积网络(GCN)进行各类项目关系二部图的表示学习,并使用基于注意力机制的特征融合策略获取项目初始特征。此外,在构建用户-项目二部图的基础上,设计图对比学习模块进一步增强项目和用户特征,进而提升推荐算法性能。在XuetangX、Last.fm和Yelp2018 3个数据集上的实验结果表明,在选择最优参数的情况下,FRBGCL的Top20推荐结果与次优算法相比,召回率分别提升2.1%、6.8%、11.6%,归一化折损累计增益(NDCG)分别提升1.8%、6.1%、13.1%,命中率(HR)分别提升1.7%、7.8%、8.4%。

关键词: 深度学习, 推荐算法, 二部图, 对比学习, 图卷积网络

Abstract:

Recommendation algorithms are effective in addressing information overload, a common problem in the era of big data. Existing recommendation algorithms have different degrees of effectiveness but still face the challenge of learning higher quality items and user features to enhance recommendation performance. Therefore, this paper proposes a Feature-enhanced Recommendation algorithm based on Bipartite Graph Contrastive Learning (FRBGCL). An item feature initialization module is designed that can use Graph Convolutional Network (GCN) for the representation learning of bipartite graphs of all types of item relationships, and an attention mechanism-based feature fusion strategy is adopted to obtain the initial features of items. In addition, a graph Contrastive Learning (CL) module is designed based on the construction of user-item bipartite graphs, which can further enhance item and user features, leading to an improvement in recommendation performance. On three datasets, XuetangX, Last.fm, and Yelp2018, compared with the suboptimal algorithm, FRBGCL improves the Top20 recommendation results by 2.1%, 6.8%, and 11.6% for recall; 1.8%, 6.1%, and 13.1% for Normalized Discounted Cumulative Gain (NDCG); and 1.7%, 7.8%, and 8.4% for Hit Rate (HR), with optimal parameter selection.

Key words: deep learning, recommendation algorithm, bipartite graph, Contrastive Learning (CL), Graph Convolution Network (GCN)